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Aclaracién. Nos disculpamos con el lector cuya lengua nativa es el espafiol, al
presentar este documento en inglés. Sin embargo, tenemos buenas razones para
hacerlo de esta forma. Hace dos meses apliqué para una posicién posdoctoral en
el extranjero. En particular, el Prof. D. Vogan del M.I.T. me pidié una versién
preliminar de esta Tesis y fue hasta ese momento en que tuve la oportunidad de
recolectar los resultados y unificar la presentacién en un solo documento. Pero
tenia que ser en inglés, por razones obvias. Inmediatamente después de presentar
esa versién preliminar empezamos a trabajar en algunos problemas relacionados
con los que obtuvimos en esta tesis con el Prof. Finlay Thompson. Asi que usamos
esa versién preliminar en inglés como referencia para colaborar con él. Por tltimo,
dado que el Prof. V. Pestov de la Universidad Victoria de Nueva Zelanda ha sido
invitado a participar en el Comité de la Defensa de Tesis, y puesto que hay algin
precedente en CIMAT de presentar la Tesis en inglés, decidimos mantenerla en esta
forma.:
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To Jesus, because He lives.

- Neither is there salvation in any other: for

there is none other name under heaven given

among men, whereby we must be saved.

Acts 4:12




TSR T, A

The fear of the LorD és the beginning of
wisdom: and the knowledge of the holy is
understanding.

If any of you lack wisdom, let him ask of
God, that giveth to all men liberally, and
upbraideth not; and it shall be given him.

And further, by these, my son, be admon-
ished: of making many books there is no
end; and much study is a weariness of the
flesh.

Let us hear the conclusion of the whole

matter: Fear God, and keep his command-
ments: for this is the whole duty of man.

Proverbs 9:10
James 1:5
Ecclesiastes 12:12,13
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Disclaimer. We apologize to the reader whose native language is Spanish, for
presenting this document in English. We had 2 good reason, however, for doing it
so. Some two months age I applied for a postdoctoral position abroad. In particular,
Prof. D. Vogan from M.L.T., requested a preliminary version of this thesis and it was
at that point in time that I took the opportunity to collect the results and unify the
presentation in a single document. But it had to be done in English for the obvious
reasons. Right immediately after I submitted that preliminary version, we started
to work on some problems related to those approached in this thesis, with Prof.
Finlay Thompson. So we used that English preliminary version for reference and

general background for the collaboration with him. Finally, since Prof. V. Pestov

from the Victoria University of New Zealand has been invited to participate in the
Thesis Defense Committee, and since there has been some precedent at CIMAT of
presenting the Ph.D. Thesis in English, we decided to keep it in this form.

INTRODUCTION

The main purpose of this work is to understand the structure of the (real and
complex) Lie supergroups having GL» as their underlying Lie group and having
g = go © g1, with go = gly = g1, as their Lie superalgebra, further restricted by
the condition that the action of the even gl, on the odd gl, is given by the adjoint
representation. We also give a description of their compact real forms and look at
their maximal tori.

In other words; we solve Lie’s problem of finding the Lie group associated to

. a Lie algebra within the category of supermanifolds for a specific family of Lie

superalgebras. The exposition is organized in such a way that we have kept in the
main part of this presentation (§2 to §6) the results that, up to our knowledge,
are new in the existing literature of the subject. The exceptions are §1 and the
Appendix. In fact, §1 contains results from the Ph.D. Thesis of my ‘PhD-seminar-
mate’ Gil Salgado (see [15]) that are included here for the sake of completeness and
self-containedness. The Appendix, on the other hand, has been included for the
benefit of the reader, as it provides a quick reference to the basics on Lie supergroup
theory and to the theory of Ordinary Differential Equations in supermanifolds —a
main tool used in this thesis.

A good deal of motivation for studying Lie superalgebras of the form b @ b,
for a given Lie algebra b, has been given in [6]. The Lie superalgebras studied
there correspond to those for which the Lie bracket of any pair of odd elements is
identically zero, as they represent the Lie superalgebra generated by Lie derivatives
Lx, and contractions iy on the graded algebra of differential forms on a smooth
manifold. On the other hand, from [15] we know that for the Lie algebra h = gl,
defined over the complex numbers, one actually obtains eight different isomorphism
classes of Lie superalgebras satisfying the constraints mentioned above (ten different
classes of them over the real field). Ounly one of these classes, of course, yield all
brackets of odd elements equal to zero.

Other motivation for looking at the superalgebras ) @ by is that they provide us
with the simplest supervector space model on which we can actually study nontri-
vial equivariant ‘change of parity maps’ going from the even copy of § into the odd
one, with minimum hypotheses. A bit more of motivation comes from [1], where in
order to understand some physically relevant Lie superalgebras, the authors classify
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Lie superalgebras go @ g; under the hypotheses of having a reductive go = s ® m
but constraining its action on g; (eg, m acts trivially), as well as the image of the
odd brackets (eg, they must be contained in m). A simple nontrivial reductive
go = 5 @ m we may think of is gl,, so that s = sl and m is the one-dimensional
subspace generated by the multiples of the identity 2 x 2-matrix. For us then,
g1 = gl = go and the adjoint representation gives the gi,-action in the odd Lie-
module. ‘

The general algebraic problem of determining all Lie superalgebras of the form
gl,, @ gl,, defined by means of the adjoint representation of the even gl,, into the odd
gl,, has been approached and completely solved in [15]. But we are mainly inter-
ested in the Lie supergroup structures arising from the family of Lie superalgebras
supported over gl, under the conditions imposed. We want to stress the fact that
all of them can be put on equal footing and that each one of them is susceptible of
further geometric considerations.

To give a more precise idea of what is involved in the statement of ‘understanding
the Lie supergroups having GL; as their underlying Lie group, ...’ of the opening
paragraph, let us first consider the Lie algebra gl, generated, as usual, by the 2 x 2-

matrices I = (ég), H = ((1)_01), E = (gé) and F = (28), which we will
denote here by zo, 1, z2 and 3, respectively. In considering the Lie superalgebra
gl; ® gl we think of the odd generators as 7(I), n(H), n(E), m(F), respectively,
where 7(X) stands for X with its Zs-parity reversed. The fact that the action

of the even gl, in the odd g, is given by the adjoint representation is written in

- terms of 7 as 7([z;,z;]) = [25,7(z;)] = —[n(z;),;], where |-, -] stands for the

Lie algebra bracket. To complete the Lie superalgebra description we must give a
symmetric bilinear map T' : gl x gl, — gl, representing the bracket of any pair of
odd elements. Writing I'(z;,z;) = [r(z:), 7(z;)], it is a straightforward matter to
check that the Jacobi identities for the Lie superalgebra imply that,

I(zo,z0) = Azo

Ilzo,z1) = pzy I'(z1,21) = 2vzg
F(CEo,:I,‘g) = U2 I‘(Il,mg) =0 F(l’g,.’l)z) =0
D(zo,z3) = pzs  T(z1,23) =0 I(z2,23) =vzy  T(z3,23) =0,

for arbitrary parameters A, p and v in the ground field. A different symmetric
bilinear map I : gl, x gl, — gl, would yield a different set of parameters; say XN, o/
and v', respectively. Let us denote by gl,(F; A, u,v) the F-Lie superalgebra (F = R
or C) gl, @ gl, defined by the parameter values (\, u,v). It was proved in [15] that
the Lie superalgebras gl,(F; A, 1, v) and gly(F; N, i/, ') are isomorphic if and only
if there is a Lie algebra automorphism 7 : gly — gly and an F-linear isomorphism
S : gly — gl, satisfying

[T(@), 5@ =S(z,y]) and T'(S(2),5(y) = T(T(z,v)),

for any = and y in the Lie algebra gl,. This is the case (see [15]) if and only if there
are nonzero constants «p, a; and o in the ground field F, such that,

[ 5% 2] 2

7 7 '
A= a—07 w=p oy V =Vvaphs”.
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It follows that either, the three parameters A, 1 and v are equal to zero, or exactly
two of them are zero, or exactly one is zero, or none of them is zero. That is how
the eight isomorphism classes over C arise. In the real case, one further sees that
the product X' is equal to Av times a positive constant. Therefore, the sign of this
product must remain constant, thus giving ten real isomorphism classes. Concrete
representatives for the different classes can be given. In the complex case we shall
agree on choosing the parameter representatives in such a way that, when different
from zero, A\=2, u=2and v = 1.

We are then interested in finding out explicitly the actual Lie supergroup whose
underlying Lie group is GL» and whose Lie superalgebra is gly(F; A, 4, v). Let
us denote this Lie supergroup by GLa(F; A, u,v). We proceed by following Lie’s
techniques: That is, we first find a faithful representation of the Lie superalgebra
gly(F; A, i, v) inside the Lie superalgebra of supervector fields on a given super-
manifold. We then look at the integral flows of the supervector fields which are
images of the Lie superalgebra generators z; and m(z;). The main resource for
finding out the integral flows of the various supervector fields is the existence and
uniqueness theorem proved in [13] —and thanks to the ODE theory in superman-
ifolds developed there, we may follow Lie’s original method (which is non-obvious
a priori in the Zs-graded category) for finding the supergroup structure out of the
Lie superalgebra. We then consider the composition of the various integral flows
regarding the integration parameters as independent variables; they will eventually
be interpreted as local coordinates on the Lie supergroup. The multiplication law

~ will emerge after composing two different sets of integral flows.

The problem of giving a faithful representation of the Lie superalgebra gly (F; A, 1, ;
v) inside the Lie superalgebra of supervector fields on a given supermanifold and the !
problem of finding the integral flows of the image generators have some interesting
implications. The integral flows actually describe a (local) action of GLa (F; A, u1, v)
on the supermanifold. Since supermanifolds come equipped with a natural forgetful
(covariant) functor that recovers for each object the underlying smooth (or holo-
morphic) manifold over which the ‘super’ structure sheaf is defined, the natural
supermanifolds to consider for a faithful representation of gl,(F; A, i, v) are those
having F? as their underlying manifold. We would then expect the Lie supergroup
action of GLy(F;\, i, v) on it to yield the ordinary linear action of GL» on F?
upon application of such a functor. What we have found, however, is that all but
two isomorphism classes of the Lie superalgebras we obtained can be represented
as supervector felds on the (2,2)-dimensional supermanifold F?2 in such a way
that we can recover the F-linear GLs-action on F?. The classes corresponding to
A # 0,u =0,y =0] and to [\ = 0, = 0,v # 0] have to be represented as su-
pervector fields in F31® and the interpretation of the GLa(FF; A, i, v) action is more
subtle.

We recall that a Lie supergroup structure over GL, is thought of as a sheaf of
Zs-graded algebras. Actually, for Lie supergroups this structure sheaf is easy to
describe (see [8]) and in particular, for the Lie supergroups we are interested in, the
structure sheaf —which we denote by GLx(FF; A, i, v)— is isomorphic to the sheaf
of sections of the exterior algebra bundle associated to the trivial vector bundle
GL» xgl, — GL». In particular, GLy(F; \, i, v) = (GL2, GLo(F; A, i1, v)) is a (4,4)-
dimensional supermanifold and a set of local coordinates {g;;; i} (4,7 € {1,2}) can




be chosen in such a way that under the natural sheaf epimorphism (ie, the source of
the forgetful functor mentioned above) GL2(F; A\, p,v) = C&y,, 9i5 > Gij» {Gis} is a
set of local coordinates on GLy. Moreover, the set {;;} yields at each point in GL;
a frame in the corresponding fiber of the trivial bundle GLy xgl, = GL2. To say
that GL2(F; \, i, v) is a Lie supergroup also means that there is a multiplication
morphism (composition law) m : GLa(F; A, u,v) X GL2(F; A, pt, v). = GL2(F; A, p, v)
and we would like it to be described by thinking of the local coordinates g;; and ;5
as ‘elements in the supergroup’, identified with 2 x 2 matrices g and <y respectively,
that can be ‘multiplied’. We show that the Lie supergroup multiplication map can
be cast into a composition law that looks as follows:

&) - (g,7) = (g g(l+ Fo),y +Adg™ )y + 7)),

where the F;’s are matrices —depending on the parameters A, i and v, as well as
on the matrices g’, 7/, g and y— taking their values in the nilpotent ideal of the
exterior algebra generated by the entries of oy and '. Note that we can immediately
read off that the composition law starts, at the level of the even coordinates, as the
usual matrix multiplication for GL2. At the level of the odd coordinates it starts as
the gl,-component of the semidirect product of GLz xgl, associated to the adjoint
representation. The composition law will be the semidirect product precisely when
Fo and F; are identically zero, which corresponds to the case when all the brackets
of the odd elements are zero;ie, A=pu=v =0.

We call the reader’s attention to the fact that the actual determination of the
- multiplication law above looks formally like the determination of the co-multipli-
cation map on the Z,-commutative Zs-graded algebra generated by the local coor-
dinates in the supergroup (see §3 below). This co-multiplication map will depend
on the parameters A, p and v. Since the inversion morphism defined with the
Lie supergroup gives rise to an antipode map for the co-multiplicative structure,
the final product might also be approached within the theory of quantum groups
(see the papers by Woronowicz, [20], [21] and [22]). The main reason for choosing
the differential-geometric approach rather than the Hopf-algebra approach is that
we also wanted to understand the supermanifold structure of the Lie supergroups
GL»(F; A\, i, v) within the spirit of Lie’s fundamental theory, making extensive use
of ODE’s and having in the background Frobenius Theorem (see [12]).

Let us mention that we have succeeded in finding general composition laws (ie,
depending on arbitrary values of the parameters (A, i, v)) for only four of the eight
isomorphism classes over the complex numbers. We have been able to give the other
four composition laws only for specific representatives inside the isomorphism class.
The difficult cases for giving a composition law for arbitrary parameter values are
those corresponding to the Lie superalgebras having v # 0.

Once we reach at the point of identifying the multiplication law (g’,v’) - (g,7),
we should be able to verify that the Lie superalgebra of left-invariant supervec-
tor fields on GLy(F; A, u, v) is actually isomorphic to the abstract Lie superalgebra
gly(F; A, 1, v) we started with. In order to do this we have to provide an appropri-
ate commutative diagram of supermanifold morphisms capable of stating the left-
invariance property. This is a common resource in supermanifolds theory: Since
supermanifold morphisms are not determined by their values on the points of the
underlying manifolds involved, one must be careful each time one needs to leave
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an argument fixed in a two-argument morphism (an example of this technique is
given by the ‘evaluation map’ introduced in [13] to deal with the uniqueness of
the integral flows of supervector fields). We have given such a commutative dia-
gram and showed that it really corresponds to the left-invariance property at the
level of points. We have also used it to verify the assertion that the Lie algebra of
left-invariant supervector fields on GLa(F; A, p,v) is isomorphic to gly (F; A, g, v).

At this point, the essence of the classical Lie’s Theorems finds a concrete veri-
fication for the Lie supergroups GLa(F; A, i, v). Other aspects of Lie’s theory and
some applications can be observed for our particular family of examples by looking
at their compact real forms. In particular, the problem that called our attention
first was to understand in what sense we could realize the analogue (or analogues,
if there was more than one possibility) of the Hopf fibration, once we have concrete
descriptions of the ‘super’ versions of the groups Uz and SU,.

In order to approach this problem we first consider the real Lie superalgebras
us (A, i, v) —whose underlying supervector space is uz @us— that arise after chang-
ing the basis in gl,(C; A, i, v), so as to have the even copy of uy generated over the
real field by wo = i, w3 = iH, ws = E— F and wy =i(E+ F), as usual. Welet
be as before, so that the symmetric bilinear equivariant map I' : uz X us — us that
gives the Lie bracket of any pair of odd elements via I'(z,w) = [r(z),7(w)] is

T'(wo,wo) = tAwp 4

I(wo,ws) = ipws T'(ws,ws) = 2ivwo

T(wo,w2) =tpws T(ws,we) =0 .  T'(wa,ws) = 2ivwy

T(wo,w1) = tpw; T(ws,w1) =0 .- T(ws,w1)=0 = T(w,w:i)=2ivwo.

Therefore, A, i and v have to be restricted from taking arbitrary complex values in
al,(C; A\, i1, v) to purely imaginary values on us(), g, 7). The maximal toral subal-
gebra of us (A, i, v) is generated by wop, ws, w(wo) and w(ws). We find the integral
flows of the appropriate supervector fields which are images of these generators and
also find the composition law for the maximal torus T2(), p,v) C U2(A\, p, 7). In
this case we have succeeded in writing it down for arbitrary parameter values of A,
u and v, regardless of the isomorphism class [A, y, v].

The maximal tori arising from the different isomorphism classes of the unitary
supergroups brings to the foreground the general problem of classifying all the real
Lie supergroup structures that can be defined over the torus T? = S* x S*, whose
‘odd sector’ comes from the adjoint representation of t; = Lie(T?). This problem
fits into the general spirit of the first part of this work and can be solved by using
the same methods; ie, by classifying first the Lie superalgebra structures on t; & ts
associated to the adjoint representation. Since ts is Abelian, the Jacobi identities
for the various combinations of homogeneous elements are all trivial and, therefore,
there are no conditions imposed on the symmetric bilinear map I' : to X t; = ta.

Once a basis of tp is given (and the basis of the odd direct summand is the
same but with the understanding that its parity has been reversed), the problem .
of classifying those symmetric bilinear maps I : t; X t; — t2 that yield isomorphic
Lie superalgebras on t; @ t; comes down to the problem of classifying pairs (6%, 6?)
of real symmetric bilinear forms under the action of GL»(R) x GL2(R) given by

(T,S) - (6*,6%) = (T11 8™ - 0* + T4 S~ - 67, T5y S0 - 01 + Tp, 571 - 62,
6
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where T and S belong to GLz(R), S~-8% = S716%(S~1)" and the indicated matrix
entries are referred to the chosen basis. It is proved that there are seven different
orbits for this action (only four if one would pose the same problem over the complex
field) and it is shown that there is a surjection from the equivalence classes of tori
we have found for the various superunitary groups, onto the equivalence classes of
Lie superalgebras obtained this way.

Actually; one could be slightly more general and remove the condition that the
Lie superalgebras be associated to the adjoint representation only In fact, one can
classify the Lie superalgebra structures that can be supported on o F2; that is,
with the only condition that the odd module be a 2-dimensional representation
space for the torus. This problem has been solved in general in a recent joint work
of this author with F. Thompson and O.A. Sanchez-Valenzuela.

Some of our future goals are: To look at some fibrations arising from the different
Lie subsupergroups GLz(F; A, 1, v) and giving rise to nice supermanifold quotients.
In fact, we have begun this study by looking at the various Lie subsuperalgebras
(and their corresponding Lie subsupergroups) having the maximal parabolic sub-
group P C GL2 as their underlying Lie group. We have also started to look at
the fibrations over the various superspheres obtained as the quotient and we have
also taken a look at the problem of defining and realizing in a concrete fashion
some left-invariant geometric structures —like Zs-graded Riemannian metrics and
Zy-graded connections— for the principal fibrations obtained. In particular, the
Maurer-Cartan form and Cartan’s structure equations can be easily described for

. all the supergroups GLa(IF; \, u, v), regardless of their isomorphism class. We are
also looking at the Hopf fibration in this Z.-graded category, which seems to be
- more illuminating and more accessible now that we have explicit descriptions for
" the various Lie supergroup structures involved. These results will soon be fully

developed and published elsewhere.




1. CLASSIFICATION OF LIE SUPERALGEBRAS BASED ON gl
WHOSE ODD MODULE IS gl, ITSELF UNDER THE ADJOINT ACTION

Let F be either R or C. Let gl, be the Lie algebra of 2 x 2-matrices with entries
in F. We want to classify the Lie superalgebra structures on the supervector space

(1) ~ ghjz =90 D g1, where go =gl, and g; =g,

for which the action of the even Lie algebra go = g, on the odd Lie module g; = gl,
is the adjoint action. To classify them all amounts to classify the symmetric bilinear
maps I : gl, x gly, — gl,, satisfying the equivariant property,

(2) T(fz,y],2) + T(y, [z, 2]) = [z, T(y, 2)]

and the odd Jacobi identity,

®3) [z, T, 2)] + [z, [z ¥)] + [y, I(2,2)] = 0.

Warning. In the following sections we have a slight change of notation with respect
to that used in the introduction above. Here we have written y; instead of m(z;).

Let {z;} be a basis for go = gl, and write y; = m(z;) so that {y;} becomes a
basis of g1 = gl,. We shall refer ourselves to {z;} as the set of even genemtors and
. to {y;} as the set of odd generators. :

i

Convention. It will be assumed that the bases of the even and the odd direct - = .- y "
summands, of all the Lie superalgebras that appear throughout this work, are ' \
related this way. ' ‘
Let I : gl, x gy, — gL, be a symmetric bilinear map satisfying (2) and (3) above. |
Following the standard notation in Lie superalgebras we shall write [y;, y;] instead ’
of I'(z;,z;) and we write the Lie superalgebra bracket l
|

|

I

[, ]:9L®gly x gl @ gl — gl © gy

in terms of the graded basis {z;,y;} as

(4) zz,zy ZCzL]xky l'z: yJ Zczkgyky yzayj Zrzk_yxlﬁ
=0

where the Cj;’s are the structure constants for the Lie algebra gl, and the I'i;’s
are obtained from T after setting [y;,y;] = T'(zs,z;), and writing them as linear
combinations of the even generators.

It is a straightforward matter to verify that (2) implies (3). Now, using (2)
and the first two equations in (4), one may explicitly find the I';z;’s and show
that they depend on three scalar parameters (), p, V). More concretely, we use the ‘
identification,

(5) T & I, z; < H, 2 F and T3 & F,




where I is the identity 2 x 2 matrix and {H, E, F'} is the standard basis for sl,.
Similarly, we set,

(6) Sy & I, y1 & H, y2 < E and ys & F.
Then,

[Y0,%0] = Azo \
™ [vo,y1] = px: [y1,91] = 2vzo

[yo,y2] = pz2  [y1,42] =0 [y2,y2) =0 v

[Y0,y3] = pz3 [y1,y3] =0 [y2,y3] = vzo [y, 93] = 0.

Thus, writing I'; for the matrix whose (4, k) entry is I';;z, we have

/A 000 0 22 0 0
o=l 6 wol  T=|6 o oo
® 0 005 PR
n-(2eet) me300)
0000 \z 0 0 0 |

. Now, the Lie superalgebra corresponding to the parameter values (A, p,v) is iso-
morphic to the Lie superalgebra corresponding to (X', p',»') if and only if there is E
a pair of invertible F-linear maps S :gly = gIz and T : gl, — gl, such that, for
7=0,1,2and 3, :

where I is the matrix corresponding to the parameter values (X, u’,v'); on the
other hand, Cy is the zero 4 x 4-matrix and

0000 0

OO O

(10) C; = Cs =

0 0
0 0
G2 = 2 0
0 0

OO OO
NO OO
i
OO = O

0
1
O K
0

OO0

0 0 0
0 2 0}°
0 0-2

o

3 3 .

(9) TC; T_l ZT‘JO SCJ‘S_I = ZI’”C” TPjS—l = Z Sijl_‘;-, |
]\
|
\
|
|

Using the first equation in (9), one immediately finds that Ti = 0 for ¢ = 1,2,3.
Therefore the structure of the linear map T' can be decomposed in blocks as

T = (CBO ;) t € Aut(slp), t= (to]_,toz,tos) € (sly)*, ap€elF— {0}
This triangular block form of the matrix T allows us to explicitly find its inverse.
Furthermore, let us write adsi(z;) : slz — sly for the restriction to sly of the action
of z;, 2 =1,2,3. Then, the LHS of the first equation in (9) says that,

1 0 tadst(xj)t‘l ' .
TC;T _(O t adyq(z; )¢ ji=1,2,3.

9
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On the other hand, the RHS of the same equation yields,

0 .
ZT’JC’ - <0 % Ty adsr(zz)) 7=123

It then follows, on the one hand, that
(11) a tads( -'L'] ZIZU adg(( xl j=1,23.

This says that ¢t € Aut(slz). A stralghtforward computation shows that ¢ satisfies
(11) if and only if

2 0 0
det(t)t ' =x"1tTk,  where n=<0 0 1).

0 1.0
In particular, taking determinants on both sides, we get det(¢) = 1, and therefore,
(12) teAut(sh) <= t€80.(sh) <= ti=r1tTxk, det(t)=1,
where & is the Cartan-Killing metric in sl, s(z,w) = Tr(ad(z) o ad(w)), and the ' |
matrix appearing above is taken with respect to the basis {H,E,F}. -

On the other hand, we also have tadg(z;)t™! = 0, for j = 1,2,3, which easily
implies that t = 0. In summary,

(13) T= (%0 g) te Aut(sh), ao€F—{0}.

Now, using the first two equations in (9), note that they both imply that

T C;T~ 1 = SC;S7Y; that is, S7IT'C; = C;87'T, for j = 1,2,3. Let M be

any 4 x 4 matrix that commutes with C'1, Cs and Cs. It is a straightforward matter
to see that,

. — . ) — = al O
MC]—C]M, ]—17273 ~ M_(O 06213)(3)’

where @; and as are arbitrary scalars and L33 stands for the 3 x 3 unit matrix.
Then, for our problem,

5-1T=<°61 0 ) aras £ 0,

asllzxs

-1 .
_ { ooy 0
5= ( 0 a,lt)

We now finally look at the third set of equations in (9). The equation for j = 0
yields the relations

and it follows that

Aa? = Nag and puon g = ' oy,

whereas the equations for j = 1,2, 3 implies that
v ;
aov =—5  and  pojoz = pap,
1251

where use of (12) has to be made. We obtain the following:
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1.1 Proposition. (1) A Lie superalgebra based on gl, whose odd module is gl,
itself under the adjoint action is defined by giving three independent parameters
(A u,v) € F, in such a way that the given generators, {z:} and {y;}, where y; =

n(z;), satisfy the commutation relations (4) with the Tix;’s and Cix;’s ag in (8) and
(10), respectively.

2) Let g(\, u,v) be the Lie superalgebra obtained from the parameter values (X, p, v).
Then, g(A\, 1, v) is isomorphic to g(N,p',v') if and only if there are nonzero con-
stants ag, o1 and asz, such that,

(3) Let R be the ground field. There are, up to isomorphism, ten different Lie
superalgebras based on gl whose odd module is equal to gl, under the adjoint action.

(4) Lei C be the ground field. There are, up to isomorphism, eight different Lie
superalgebras based on gl, whose odd module is equal to gl, under the adjoint action.

Proof. What we have done so far is the work of showing why the first two statements
are true. For the third statement note that if R is the ground field, then the product
X1/ is equal to the product A\v times the positive constant a;?as?. Therefore, the
sign of the product Av must remain invariant, and concrete representatives can

. be found with parameter values of (A, p,v) satisfying the conditions given in the-

following list:

>0, p#0 >0, p=0
<0, p#0 <0, u=0
vu#£0, A=0 Ap#0Q, v=

v#EQ, p=A=0 A£0, p=v=0
p#Z0, A=v=0 A=p=v=0.

When the ground field is C there is no sign of the product Av to care for. Therefore,
concrete representatives can be found satisfying the conditions given in the following

list:
Aw#E0, p#0 Av#EO, p=0
vp#0, A= AMm#£0, v=0
v#EO0, pu=A2=0 A£0, p=v=0
p#0, A=v=0 A=p=v=0.

11




2. REPRESENTATIONS OF gl,(F; A, u,v) BY MEANS
OF SUPERVECTOR FIELDS ON F2I? anp F3I®

We now want to find representatives of the different classes of Lie superalgebras
just found, but realized as supervector fields on an appropriate supermanifold. In
order to do that, let us first note that 1f {2, ¢} are local coordinates on a given
open subset of a supermanifold (with z° even and ¢* odd) and, if we write the even
and odd supervector field generators in their simplest (linear) form

o) o
;= X; = ZA(xi)abZa-a—Z-—b + ZD(.’L})M,,(”@
a.b v

and
yi—r Y = ZC Vi) ubCH ab"‘ZByz)avz ac,ﬂ
B,b
we obtain
0
[X,;,Xj] = Z(A(l’z) A(:Ej) - A(QIJ) A((L‘i) )abzaa_zl;

a,b : 3

+ > (D(z:) D(z;) — D(z;) D(z:)) ¢ 60”

" ]

X, 51 = 30 (Dla:) Olwy) — Cls) Ale) 4 C* oy
b,u ' :

;

+ 37 (A Bly) — Bu) D), 2 S

a,v l

%, %51 = 32 (Blo) Clus) + Bluy) Cw0)) 12"
a,b %“

+ 2 (00 Bws) + 0 Bw0), 2

Therefore, this suggests to look for matrix representations of the form

T X; = (A(g"') D(Ox,-)) and  me Y= <08ﬁ) B(g”)>, | o

where the Zs-graded Lie bracket is given by the usual commutator when the ele-
ments are both even, or one even and one odd, and it is given by the anticommutator
if both elements are odd. One observes that A : gl, = EndVp and D : gl, = End V;
are ordinary representations of the Lie algebra gl, and, therefore, they restrict them-
selves to representations of slz. We therefore find explicit representations which we
state in the following theorems:




2.1 Theorem (1) Let the ground field be R Lie superalgebras in the equivalence

classes of
>0, p#0

vup#0, A=0
p#0, A=v=0

<0, us#0
<0, u=0
A #0, v=

A=pu=v=0

admit ¢ matrz representat.ion in the supervector space R? @ R? of the following
form:

Xegl, |X|=0 Xesh, |X|=1 X=Ieg, [X|=1

X 0 0 dX 0 gl
0 X eX 0 kI 0 )
where X = 2gk, u = eg +dk and v = ed. The real Lie superalgebras lying in the

equivalence class of \v > 0 and p = 0 admit a similar matriz representation, but
in the supervector space C2 @ C2.

(2) Let the ground field be C. Lie superalgebras in the equivalence classes of

A#0, pu#0 AFEO, u=0
vp#0, A=0 Au#0, v=0
p#0, A=v=20 A=p=v=0

. admit a matriz representation of the type above in the supervector space C2 @ C2.

In either case, their explicit realizations in terms of supervector fields in the super-
manifold R212 or C212 with local coordinates { 2%,2%; (*, (%} are given by

XO:Zl'gz—l“L 862+C1£_1+c~%

K== %_ 2822+C1£1__428%
L - Aa3 3(2-2

Xg_Zz%"‘Cz%

Y":k(glg(z_lﬂzai )+o( 52 ac * 25%2)
Yl:e(cl 4232 )+a(# ail_zzéi—z>
Y =e(t 32+dz -88?
5@=e{2%+d22%.

2.2 Theorem. LetF be the ground field, which can be either R or C. Lie superalge-
bras in the equivalence class of v # 0 with u = A = 0 admit a matriz representation
in the supervector space F° @ F® as follows:
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0

0

X - 8
0

‘0

0

10

X = 8
<0

0

0

0

I - 8
0

0

0

) (:
) (¢
) (2
) (3
) (3
) (3

0

0

X

0

X

0

0

0

0

0

0

0

0

0

0

0.

)
)
)
)
)
)

|
|

X egl,

XE-SIQ

I cgly

LXI=0,
X|=1,
I =1.

Furthermore, their explicit realizations in terms of supervector fields in the super-
manifold F31® with local coordinates {2°,2%,2%; (°,(*, (%} are given by the same
expressions for Xx (k=0,1,2,3) and Y; (£ =1,2,3) in the theorem above (corre-

. sponding to the parameter values d = 1 and e = v ), together with,

. Yo;zoi.

a¢e

2.3 Theorem. LetF be the ground field, which can be either R or C. Lie superalge-
bras in the equivalence class of A 7% 0 with u = v = 0 admit a matriz representation
in the supervector space F° ®© F? as follows:

) (¢

0 0 0
8X
X = <00
0
00
1 0
80
I - (00
0
O0
0 0
00
X = (OO
0
0O

[e=]

[en]

(=]

o

(e

SN N ~ AN o N’

P P
OO O OO OO0OO0OC O

O OOO OO
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X

0

)

XGS[-z

I egly

X €sly

I‘Y[:07
|1} =0,
|X|=1,




<100)A< 0 o>'
0 0
- o o o O

Furthermore, their explicit realizations in terms of supervector fields in the super-
manifold 3% with local coordinates {2°,2%,2%; (°,(*,(?} are given by the same
expressions for Xy, (k = 1,2,3) and Yy (£ = 1,2,3) in the theorem above (corre-
sponding to the parameter values d =1 and e = 0), together with,

0 0
—_,0_ Y 0_“~¥
Xo=2 azo—i—C 5c0
and
0 A 0
—_o0 Y 2.0 2
Yo=¢ 8z0+22 8CO

The proofs. We shall now proceed to prove these theorems: We first consider
Vo = Vi =F® and a 3-dimensional representation

A= pape - gl = End F®

. depending on the parameters (a, b, c) € F, where

a cb—a) 0 (0 ¢ 0
Plap,c)(To) = | O b 0], Papolz)={0 1 0 |,
0o 0 b , 0 0 -1

0 0 ¢ 0 0 0
Papey(z2)=1{0 0 1], Plapey(zz) =10 0 0].
0 0 0 01 0

Similarly, we consider .
D =parpery 8l = End F3.

Now, the conditions that the odd module is equal to the adjoint representation are
the following:
2B(y2) = P(a,b,c) (21)B(y2) = B(yZ)p(a’,b’,c’) (z1)
~2B(ys) = p(ab0) (#1)B(ys) — B(ys)p(ar v (71)
B(yl) = P(a,b,c) ($2)B(y3) - B(y3)p(a’,b’,c') (272)
= B(y2)p(a’ b7 ,c') (T3) — P(a,b,c) (T3) B(y2)
together with

2C(y2) = p(ar e (21)C(y2) — C(Y2)P(a,b,c) (21)
—2C(y3) = p(ar,p,ey (1) C(y3) — C(¥3)P(a,b,c) (T1)
Cly1) = p(a',b’,c’)($2)c(y3) - C(ys)P(a,b,c) (z2)

= C(Y2)P(a,b,c)(T3) = Pla o) (23)C(y2)
15
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and it is easy to check that

B(yi) = dpap,e)(ys)  and  Clys) = eparpr,en(¥i),  1=1,2,3,

<

whereas

f oeg—cf 0 h ck—ch 0
B(yo)= |0 g 01, Clyo)=1]0 k 0.
0 0 g 0 0 k

Therefore, the equations that have to be satisfied for these matrices to define a
representation of gl,(F; A, i, v) are the following:

2B(y0)C(yo) = Ap(ap,e)(xo)  and  2C(yo)B(yo) = Ap(ar br,e) (Z0),

from vx/;hich it follows that
2fh = Xda = \d and 2gk = \b = \b.

Then,
BP(ab,e)(T:) = Blyo)C(ys) + B(yi)C (o)

pP @ b ) (Ts) = Clyo)B(ys) + C(y:) B(yo)-

From which it follows that i
u=-eg+dk.

Then
B1)C(y1) = vpape(o)  and  C(y1)B(y1) = vpw p,e)(%0),

implies
va=va =0 and vhb=vb =ed

which are also the same relations implied by

VP(ap,e)(To) = By2)C(ys) + B(ys)C(y=)
Vp(a’,§’,c’)($0) = C(y2)B(ys) + C(y3) B(y2)-

Finally, the relations
0=B(y)C(y2) + B(y2)C(y1)  0=C(y1)B(y2) + C(y2) B(y1)
0=B(1)C(ys) + B(ys)C(y1) 0= C(y1)B(ys) + Clys)B(y1)
and
B(y2)C(y2) =0  C(y2)B(y2) =0  B(ys)Clys) =0  C(ys)B(ys) =0

are automatically satisfied.

We can now proceed to see how the concrete representatives given in Proposition
1.1 can be realized via this family of representations. The equations that have to
be solved are posed in the following table:

16
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W0, p£0 p=eg+dk a=a =fh=0 b=b'=¥=%
AW#0,p=0 0=eg+dk a=a' =fh=0 b=b’=¥=fg
vp#0,A=0 p:e§+dk~a=a'=fh=o b:b'=ey—d gk=0
A#£0,v=0 pu=eg+dk a:a’=—2—f\c—h b:b’—%\i ed=0
v£0, u=x=0 0=eg+dk a=a =fh=0 b:b'z@:—eyE
AA0, p=v=0 0=eg+dk a=a’=@ b=b’:2§ﬁ ed =0
u;éO{,)\——'V_:O p=eg+dk fh=0 gk=0 ed=0
A=pu=v=0 O=eg‘+dk fh=0 gk=0 ed =0.

A word must be said about the class of Av > 0 and p = 0 over the reals. It is
a straightforward matter to see that the equations to be solved require imaginary
numbers. That means-that the Lie superalgebras coming from that class need to
be represented on a complex supermanifold, which nevertheless may be regarded

* as a real supermanifold with twice as many even and odd dimensions.

17




3. THE ASSOCIATED LIE SUPERGROUPS GLo(F; A, p,v)

It is a straightforward matter to find the integral flows of each of the represented
supervector fields. The techniques introduced in [13] are particularly simple to
apply in this case. We shall start with the supervector fields that can be realized in
the (2, 2)-dimensional supermanifolds F2/2. Thus, let T, : RM! x F2I2 — F2I2 be the
integral flow of the even supervector field X; that represents x;. According to the
general theory in [13] I'z,* = Exp(¢;X;), where ¢; is the even parameter resulting
from the integration process. By computing the effect of I';,* = Exp(¢;X;) on the
coordinates 2%, 22, (1, (2, it is easily seen the action of I';,* has the same effect as
the 4 x 4 matrix Exp(¢;X;) does (X; being the 4 x 4 matrix associated to z; via
the representation) on the unit column vectors

2t < 22 & ¢ o , 2o

O - OO

1 0 0

0 1) 0

01’ 0}’ 0

0 0 1

Since Xp 2° = 2%, Xo ¢ = (%, and since X; 2 = (—=1)"712%, Xo (¢ = (—1)*1¢7, for
1 =1,2, it is easy to see that

21 1 eto 51 zt et 2t
2 to ,2 2 —th p2
. ) ez . ) ez
I’zo = Exp(ioXo) : Cl s gto Cl F:zu = Exp(t1X1) . Cl — ef1 Cl
C2 s et° Cz C2 — e——tl CZ_

In a similar way, since X; o0 X;2* =0 and X;o0 X;(* =0, fori=1,2and j = 2,3,

we have
zt s 2t 2 2t 122
. 22 2% + 12t . 22 22
rzz = Exp(t2X2) : Cl — Cl F:z:s = EXp(tg_Xg) : Cl — Cl + t3§2
| G G ttal ¢ (2

and we set up the correspondences

et 0 0 0
* 0 et° O 0 et° 0
Tz & 0 0 e 0 < (O e*O) = m(to; Zo)
0 0 0 e
er 0 0 0 .
* 0 et 0 0 et 0
Pan Axs 0 0 et 0 AR (0 e—h) =m(t1;$1)
0 0 0 eh
1 &5 0 O
, 01 0 0 1 6\
T o 001 6] ¢ (0 1)”m(t2’x?)
0 0 0 1
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1 0 0 O
. tz 1 0 0 1 0\ _ .
0 0 t3 1

We can now compose any two morphisms in some prescribed order in order to see
what the effect of the composition is and to identify the final result with the rule
to compose the group even coordinates to, t1, t2 and t3. That is,

Pzi* = Exp(t; X;)
and '
L, = Bp(X))

must correspond to

R 0 BN ,“ .
m{ti; ;) - m(t5;25) the composition of

in some appropriate order. By computing directly with the integral flows I';,* =
Exp(#;X;), where the X; are taken as the even supervector fields in Theorem 1 in
§2 above, we see that, the appropriate order is

m(ts; 2;) - m(ty;2;) = Exp(t:X;) o Exp(t; X))

because it is in this, and only this way, that the composition law for the parameters
t;, expressed in matriz form as above, actually corresponds to the usual rule for
matriz multiplication.

More generally, we may perform a change of parameters and transform t =
(to,t1,t2,3) into & new set of parameters g = (o, 8,7, d) in such way that if

Exp(toXo) o Exp(t1X1) o Exp(t2X2) o Exp(tsX3) = I

then,
2t = a2t + 22
e - 2% Bzt + 622
g " Cl > aCl +’YCZ
¢% = B +6¢%.
That is,

a= (1 + t2t3) eto+i1, B =t et°+t1, v=13 et and § = ot .
Therefore, from
Exp(thXo) o Exp(t] X1) o Exp(ts Xs) o Exp(tsXs) = Ty

and I E,, = l";, o l"; one concludes that

, o B a B " ada+py oB+p'6
gH(,yl 5/)) gH('Y 5 == g < ’)"a'l‘(s")’ ’)’16'}‘6,5 .
Remark. What we have accomplished by proceeding this way is to actually recover
the (local) Lie group multiplication law between any two generators in the identity

component. Note that this procedure only yields a multiplication table for the group
generators. However, this table has been obtained from the actual composition of
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\ integral flows, by recording the overall effect on the local coordinates. Therefore,
the multiplication law obtained this way is associative. Finally, by going into the
group ring associated to this multiplication law, and writing down the general 2 x 2
matrix in the usual form (in terms of new coordinate parameters), one recovers
(locally) the usual law for matrix multiplication as the associated group operation.

Even though this remark is very well understood in the classical Lie theory, we
now want to see how it should be applied to the integral flows of the odd vector
fields representing the odd Lie algebra generators yo, ¥1, y2 and y3. As mentioned
before, the techniques introduced in {13] can be readily applied and in this case,
the integral flow Ty, : FI' x F212 - F22 depends on an odd parameter 7;, as
Iy.” = Exp(1Y;) = id + 1;Y;. We may then immediately compute its effect on the
coordinates z%, 22, (1, (?, and obtain

2t = 2+ kn? (2t — 2t +en

22 22 + krp? 22 22 —en(?

T'y,” = Exp(noYp) : s ¢ grogd Ty," =Exp(nYi): L (L4 gy 2t

L (= %+ gmo2? ( P (B —dn2®
(21— 2t (2t 2l +en?
22 22 +en(t 22— 22

Ty,* = Exp(r2Y2) : Ty = Exp(msY3) :

¢t ¢t ¢+ drs2?

L (2= (% +dmp2? L ¢ 2
In order to find the multiplication law for the supergroup in terms of its own local
coordinates (actually, the integration parameters t; and 7;), we choose a definite “
sequence for the integral flows: We shall write : : o

U(g;70,71,72,73) ;=g oLy, oy, "oy, " o'y, *

and, from

U(g"s7q, 71,75, 715) = (837,71, T2, 73) © ¥(g; 70,71, 72, T3),
we shall deduce the Lie supergroup multiplication law. We compute first the com-
position law for integral flows depending on the odd generators. We thus get,
L 2t = Exp(Ys) (2! + ems(?)
| 22 > Bxp(ra¥2)(22)
¢t = Exp(m2¥3)(¢* + dr32?)
¢? = Exp(72Y2)(¢?).
For the sake of illustration, let us first compute this carefully, using the fact that
that Exp(r2Ys) = id + Y2 and the fact that Y5 is an odd derivation:

Exp(2Y2) (2* + em3¢?) = 2t + em(® + 1 Ys (2! + ems(?)
=2 +en(® + nYs (21) + nYs (67‘34"2)
j = 2! +em(? — ennYa((?m)
=2t +en® —en (Y2(¢®) 73 — (*Ya(m3))

=zl + e7°3§2 —ersdzt s

Exp(72Y2) o Exp(13Y3) :

= 2! + er3(® —edmyms 2},
20
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Note that we have used the fact that Ya(r3) = 0. The final result shows that
Exp(m2Y2)(em3¢?) = er3 Exp(m2Y2)(¢?) as it should be, since for each fixed value of
the odd section 73, Exp(m2Y>2) must be an algebra isomorphism and, therefore, the
constants — even the odd constants like 73 — must be preserved by it. At the light
of this, it is very easy to prove that

2l = (1 — edmems) 2t + ems(?
22 22 +en(?

= (1 — edrets)Ct + drs2?
= P+ dr2t.

Exp(r2Y3) o Exp(m3Y3) :

By proceeding in this way, a straightforward computation shows that Exp(npYp) o
Exp(m1Y1)o Exp(m2Y3)o Exp(73Y3) is 2 morphism which transforms the coordinates
2t 2%, ¢ as follows:

2t s (1—egrom)(1 — edryms)2t — e(gro — dmy )73z2

+ (k7o + em)(1 — eda73)¢t + e(1 + kdmom )3 (?
22 = —e(gro + dr )zt + (1 + egromi)2?

+e(1 — kdrom)72Ct + (kmo — em) ¢
¢t = (1= dkrom)(1 — edrams)(t — d(kmo — emy)T3(?

+ (gm0 + dr)(1 — edra7s)2* + d(1 + egmomi)T32°
= d(kro + er) ¢t + (1 + dkrom) P )

+d(1 — egrory )22t + (970 — dm1) 2>,

3.1. CasE [\, p,v = (]
Let us consider the case when e = 0. The effect of ¥(g; 79, 71,72, 73) on the local

coordinates z1,22,¢t, (2 is
2t ezt 4+ 2% + koot + kyro®
22 B2 + 622 + kB¢t + kéTol?
¢t e [(gmo + dn)a + dB7s] 2t + [(g70 + dmu)y + doTs) 22

+[(1 = dkrom)a — dkBroms] ¢* + [(1 — dkmom )y — dkdToTs) ¢°
¢ = [dare + (970 — dm1)B] 2* + [dyre + (gm0 — dm1)d] 2°

+ [=dkaroms + (1 + dkrom)B] ¢t + [—dkyrome + (1 + dkmom1)6] (2.

Writing ¥ as a shorthand notation for ¥(g; 7,71, 72, 73), the results above can be
rewritten as

¥(2)=(%) rros (@)

¥ (g) = g(g7oll +dr) Ci) +g(L —dkfofj (gl) ;
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T1 T2 10 S d : [ Iemed med ol
where T = (T3 5 )andl= (0 1). In a similar way, if ¥ := U(g’; 75,71, 75, 73),

1 1 1
v(5)=e(2) e ()

1 1
v (g) =g'(g7oll +dr') (j») +g'(L - dkro7’) <gz> ,

where g’ = (%2 ) and+ = (™ "™, ). We now want to compute the composition
g v & T3 —7T1

¥’ o ¥ and it is easy to see that
’ ’ zt o _ r "N o 2!
(1) P'o ¥ 2 ) =8 {(1 — gktimo)1 + dkToT'} g 2
, a
+ kg {(75+10)L +dkrgroT'} & <Cz )
‘ 1
® o w () =€ (ol + o) g-+r’ g (1 - dkror)

. 1
+grd(i = ghrim) (2 )
+g' {(1 - gkromo) g —dk(rg + T0) g T
1
—dkrir’ g (1 — dkoT)} (§2> .

On the other hand, we want to cornpare " := ¥(g”; 74,7, 75, 74) with ¥ o ¥, s
where

1 1 1
o w(D) e (D) eme(8)
. 1 1 1
4) 7 (%) = g"(gryL + dr") (jf,) +g"(1 — dkryr") (22) :
Equations (1), (2), (3) and (4) are equivalent to

(3) g’ =(1-gkmgm)g' g+dkrog'T' g
(6) kg g = k(g +70) &' g +dk gm0 8 ' 8, |

which come from ¥” (i:) =00 ¥ (z;) In a similar way,

(7) g" (970 L +dr") =g’ {g(r5 + 7o) g +dr' g(1l — dk7or) |
o 4d(1 - gkT{T0) g T} |
®) g’ (1 — dkry'r") =g’ {(1 — gkrimo) g —dk(ty +70) T

—dkryr’ g(1L — dkmoT)},

, which come from ¥” (gz) =00 ¥ (g:)
: 22
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We know from (5) that
g’ =g'g+kng (grll +dr') g,

and then, from (6), that
o =T + To-

Moreover, it is clear that
g =g Mg) Tt — kg Hgrpl +dr')(g)
so0, we can rewrite (7) as

gL+ dr’ ={g™! —krog g7yl + dr')}-
g7y g+dr’ g(1L — dkTor) + d(1 — gkToT0) 8T},

which implies
1

" =r+gtr'g—dkn(g™t 7' g)%

Finally, after a straightforward computation, one verifies that (8) is satisfied.

Notation and abstract form for the multiplication morphism. We shall
think of the Lie supergroup coordinates as if it were actual elements of the super-
group and represent them by (g,70,7). So, if (g',75,7’) is another element, we
realize that the multiplication law (g’,75,7’) - (8, 70,7) is given by

A - _ . _
(g'g—§féfo g gtung' T, T +10, T+g T g-pro(g Tt 7 g)z),

[ TotT1 T2

where A = 2gk and p = dk. Even more, we shall define y = ( e Tomrt

to write the coordinate elements as pairs (g,7y). Then, the multiplication law is
separated into even and odd components and, if (g',') is another element, then

(g".7') - (g,7) is given by '
- A 11 + 72 Y11 + Yoz + Ya2
(g'g+(u- 3) <7” 5 722) ( S g W2 eve,

_ +y22\,
y+g 'Y g—u (11—1-—212) (g lv'g)z)-

) in order

It is a straightforward matter to check that the associativity law holds true for
this multiplication (although this was something we already knew by first principles)
and one may also compute the left-invariant vector fields for it. But before doing
that, we note that (1,0) is the supergroup’s identity element, where 0 is the 2 x 2
zero matrix. A straightforward computation shows that the inverse element for
(g,7), which we shall write as (g,7) ™}, is given by

_ _ + _ o + 2\
(2,7) 1=(g Y bp (%)vg Yo—gygt4u (W) (gvg™?) )

Even more, we can write the multiplication morphism as follows: Let z;; and &;
the projection maps defined by zi;(g,v) = g;; and &;(g,Y) = 7¥ij- Then it is easy
to prove that
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2
}\ * + * * + * . .
m* zi; = {1 +(p— 5) <P1§11 - p1§22> <p2§11 - szzz) } Zpll'ikp;zl'kj

k=1

2
P56 + P52 \ S w ap o
+p <f > pizapirepsaes,
k=1
2
m* &; =p3&i; + Y D5yipilren3Te
k=1

2
3611 + P52 Ay
— i <M> > PhyikpiCupsTes |

2 k,£=1

| 1 T2 - .
where (yi;) = (z11%22 — T12%21) " (—-’12;1 93112) and 4,5 € {1,2}.

3.2. CASE [A # O,p = 0,v = 0]

From Theorem 3 in §2 we know that the class for which A#Oand p =v =0
admit a realization in terms of supervector fields in the supermanifold F®!® with
local coordinates {2°,2%,22,¢°%, (', ¢?} given by ’

Xo=2° aao +¢ aio . | | ;
K= g 2o+ o acl ~Com 64’ | |
X2_215;+C18_8§5 %
X; =22 38 +C28?1 | :
‘ %—C°52—0+%z°8‘20 }
Yl:ZI%_Zzaigz
Yz=z16% 4
Ye.—zz—a%. ‘

Let Ty, : F1 x F313 — F313 be the integral flow of the even vector field X; that
represents z;. Just as in the last section, and according to the general theory in
[13], T;,” = Exp(t;X;), where ¢; is the even parameter resulting from the integration
process By computing the effect of I';,* = Exp(¢;X;) on the coordinates 2%, 2!,
2%, (0, (1, (2, it is easily seen that the action of I';,” has the same effect as the
6 x 6 matrix Exp(#;X;) has on the unit column vectors (Note: X is the 6 x 6 matrix

24




associated to z; via the representation),

1 0 0
0 1 0
PANDIN 8 , 2 e 8 , 22 é ,
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Co il el Ce g
0 1 0
0 0 1
It is easy to see that
fzo)_)etozo ' fzo’_)zo
2t e 2t 2t et 2!
. 2?2+ 22 . 2% s et 22
Izy™ = EXp(toXo) 2R .4.0 s eto Co INES Exp(thl) 9 CO - Co ;
Cl > 41 Cl = 1 Cl ‘3
L L @reng
| ;
(20 2° : (2% 20 ;
‘ 2t 2t 21 2l 4tz !
. 22y 22 + tp2t . 2% 22
Iz,” = Exp(t2X>) : J O s (0 ? T.,* = Exp(t3X3) : O s 0
| | G ¢ O 10
‘ L = G+t (=

}' : and we set up the correspondences

| @ 00 0 00
0 10 0 00 o 0 o
| Lo | 00010000 10 1 0)=mtose)
; o 0 00 e 00 0 o1 ’
) 0 00 0 10
0 00 0 01
10 0 00 0
0e¢ 0 0 0 0
1 0 0
—t
Lo |00 ¢ 00 0 1o en 0 |=mina)
00 0 1 0 0 2
p 0 0 e™
00 0 0er 0
0 0 0 0 0 et




100 00 0
suene] o
1 Fzz*%—) 00 0 10 0 > 0 1 t2 | =mte;x2)
00 0 0 1 £ 001
| 00 0 00 1
1 0 00 00
010 00| (LO00
* 3 — i Fa-
T™ & 00010 0l% gtl (1) = m(ts; z3).
0 0 00 1 0 3
0 0 0 0 t3 1

As in the last subsection, we now compose any two morphisms in some prescribed
order in order to see what the effect of the composition is and then try to identify
the final result with the rule to compose the group’s even coordinates to, t1, t2 and
ts. We perform a change of parameters and transform t = (to, t1, ¢2,¢3) into a new
set of even parameters g = (¢, ,5,v,9) in such way that, if
|
EXp(toXo) o] Exp(thl) o EXp(thz) o EXp(t3X3) = P; |
then, : i
(20— €20 :
2t azt +y2? b
22— Bzt + 622 ““
O eC® |
¢ s ol + ¢ | - ;
L (= Bzt +6¢%.

That is,
) e:et07 a=(1+t2t3)etl7 ,B:tzetly ’Y=t3e_tl7 6=e—t17
where ad — By = 1. Therefore, from I'y, = I';, o I';, one concludes that
€ 0 0 e 0 0 e 0 L
g0 o Blge|0 a Bl=g"o| 0 da+fvy B8+86]. |
0 ~ ¢ 0 v ¢ 0 ~a+dy +'B+66

But now, we want to see how it should be applied to the integral flows of the
odd vector fields representing the odd Lie algebra generators yo, y1, y2 and y3. If . i
Ty, : FUt x F3I3 — F313 is the integral flow of any of the odd supervector fields,
I'y." = Exp(r;Y;) = id + ;Y;, for an odd parameter 7;. Then, we may immediately
compute their effect on the coordinates 2°, 21, 22, (%, ¢*, ¢? and obtain

fZOHZO'FToCO rz0|___)z0
2l 21 _ zl 21
22 > 22 22 22

Ty," = Exp(70Yp) : ¢ Ty," =Exp(nth):

"+ 372° ¢ (0
G Gttt
el (o -2’
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rzO,_)zO rzo,_>z0
zt = 2t 2zl 2l
2 2 2 2
22—z 22z
T,.* =Exp(nYs): T,.” = Exp(rsY3) :
vz p(12Y2) 0 s (0 va p(73Y3) O s (0
G : G+ 72?
L G +n2t L G2

In order to find the multiplication law of the underlying Lie supergroups acting on
F313 via the eight integral flows we have found, we choose a definite sequence as
before and write

*

U(g;70,71,72,73) == Lg" 0Ty, " 0 Dy " oDy, " oTy,
and, from '
‘P(g"; 7'5’; Tll.la T£I7 Té,) = ‘I}(glv T(/)7 7—1,7 Té? Té) ° ‘I,(g7 70, 71,72, T3):
we deduce the Lie supergroup multiplication law.

We compute the effect of ¥ = ¥(g; 70,71, T2, 73) on the local coordinates 20, 2,
2%, (% ¢, ¢
2% ez’ + emp(®
2t —azt + 22
22 =Bz + 622
\
¢° r—>§e'roz° +eC° _
¢t = (am + Brs)2t + (ym + 678)2° + ¢t + ¢
¢ —(am — B2 + (yre — 611)2% + B¢ + 6¢2.

By defining
zO CO
7 3‘ 1 22 - C2
we obtain

T(z):(é 2)2—&—(680 8)4‘
\p(c>=(3ff° o)+ (5 2)e

with similar expressions for ¥/ = ¥(g’; 74, 71,75, 73) and ¥" = ¥(g"; 7y, 71, 75, 73)-
A very simple computation shows that

Vo ¥(z) = <€l€(1 - 37m) 0 )z+ <€'e(1'6+7'o) 0) ¢

0 a'a 0 0
I ’ Py
; _ [ €es(ry+70) 0 €e(l—57m) O
To ¥(() = ( 0 a’ar +a't’a z+ 0 a'a ¢

From ¥’ o ¥ = ¥” it follows that €’ = €'¢(1 — 37470), a” = a'a, 7§ = 7§ + 70 and
" =71+alra
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Notation and abstract form for the multiplication morphism. Now set

= (£ 0 and v = T 0 and realize that the Lie supergroup coordinate
& 0 a 0 7

elements can be written as pairs (g,7) in such way that, if (g’,7’) is another such
coordinate element, their product is given by

roan _ €e(l —214m) O 74 -+ To 0
(g 77) (galy) _ << 02 ala 9 0 T—i—a“l‘r’a -

The identity element is <<(1) g) , (8 g)) and the inverse element of (g,v) as

: 4 B
above, written as (g,y) ™}, is given by ((eo a91> , OTO —aq(')a_l ))

Actually, we can also write down the multiplication morphism: First we write
the projections ’

- zoo(g) =€, zulg)=a, (g7 =8, zalgr)=7,
foo(g,Y) =70, &ulgY)=71, &2087) =7, &i(gy) =13,
where £22(g,7) = —71 and

1+ By _ 1+ 712(8,7)%21(8,7)

I = 5 =
z22(g,7) z11(g,7)

Then, the multiplication morphism is given by

m* oo =P TooP2T00 — %PI-’COOPECEOOPIEOOP;&O,
2
m*zi; = plTapiTh,
k=1
m* &oo =p; oo + P00,

2

m* &; =p3&; + O PiyirpiEeepsTes,
k=1

where (y;;) = ( T2 1 '::1':2> and 7,7 € {1,2}.

. 2
—Ts

3.3. Case [A = 0,p = 0,v # (]

We proceed exactly as before. By computing the effect of ¥ = ¥(g; 79, 71,72, T3)
on the local coordinates z°, 2!, 22, ¢°, (%, (2, we found

2% 20 .
2 = [a(l —vmems) + Brnm] 2t + [Y(1 — vreTs) + SvnyTs) 2°
+ [avn (1 — vre7s) + Bums) ¢F + [yrri (1 — vrams) + dvrs] ¢
22 (8 —vanm)z + (6 - vfyTng)zz‘-F (vars — vB7m)C + (vyme — von)C?
¢© 3702° + (O

¢t = o (1 — vreTs) + Brs] 2t + [yr (1 — vreTs) + 673) 22

+ [l — v7a7s) + Brmy7s) ¢t + [y(1 — vreTs) + vy T3] ¢

C =(am = )2t + (v — 622 + (B —avni)(t + (6 — 71/7‘17'2){2.
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Defining

l—vmm —vnT T, — UT T2 T )
p= 273 172 and q= 1 17273
VT1T3 1 T3 —T1

1 0 0 0
}I’(z)— (0 gp>z+(0 ng){
0 1 0
w0-(3 36 e
©=T gu)z (0 £0)
Similarly, writing ¥’ = ¥(g’; 7§, 11,75, T3) We have
oy (10 0 0
‘II (Z)'— (O glpl>z+ (O Vg:q,>c
I _ Té 0 1 0
v0= (% Su)e (5 gw)t
and we find the composition ¥’ o ¥
, (1 0 | 0 0
QO‘I’(Z)_(O g’p’gp—vg’q’gq)z+(0 vg'q’gp+vg’p’gq)c

! 0 1 0
Vou()=(T0TT >z+( ) ,
° () ( 0 g'p'ga+g'qdgp 0 g'pgp-veg'degq ¢

we have

20 CO
wherez={ 2! | and (= { ¢* | So we have 7§/ = 1¢ + 70,
22 ¢?

mn_n o n

g’'p"=¢g'pgp—veg'dgqg ad g'd"=gp'ga+g dsp.
These equations are equivalent to
v - g’ =(@Epgp-ve'degq) (@)’
(2) ®")'qd"=(gp'gp-rg'dga) (gpga+g dgp),
where it is easy to prove that (p”)~'q” = 7" + vr{'m3/73'1. In order to find RHS

of (2), we note that p = 1 — vp(z), where przy = ( 727 752 ) (similar expression

—7m173 O
for p’) and we can write g'p'gp —vg q' gq = g’ g(Il — vx), where x = p(3) +
g7 plyy g+(87" d' 8)a — (g7  P{s) 8)P(2)- Then, from (1 —vx)™! = 1 +wx +
v?x2% + 1°x3 we have

gp'gp-vegdga ™t =@ +rx+rx*+15%%) (g g) ™
thus, RHS of (2) is

r=1+vx+2%"+%%) (g7 'p'ga+g" d'gp)

One finds explicitly {’ = é(rn —T22), T8 = r12 and 7§ = ry;. With these
results, we find g” from (1), because (p”)™! = 1 + vP(y-
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3.4. REMARKS WHEN v # 0
We show a procedure for the general case: We know from §3 what the morphism
Exp (1Y) © Exp (1Y1) o Exp (r2Y2) o Exp (13Y3) is; set ¥ = TI'y o Exp (10Yp) ©
Exp (11Y1) o Exp (12Y2) o Exp (13Y3) and realize that

Uz = Az + C({ and U(¢ = Bz + D¢,

where A and D are invertible matrices with even entries, whereas B and C are
matrices with odd entries. Using similar expressions for ¥ and ¥" we can check
that the condition ¥” = ¥’ o ¥ implies

AII:AIA+BIC BII:AIB+BID
C'=C'A+D'C D" =C'B+D'D.
Then from the equations above we must find g”, 7y’ and 7" in terms of other

values. This task, however, may not be an easy one. We have seen on the example
A =0, ¢ =0and v # 0 that, as soon as the v parameter is nonzero, we find serious
computational problems. We shall then leave the remaining cases with v # 0 for
a later attempt (one with a slightly different approach). In sections §3.1 and §3.2
we found a multiplication law for the Lie supergroups with arbitrary values for A,
p and v = 0. We now choose some values for these parameters in order to find
a multiplication law for at least one representative in the remaining isomorphism
classes. Thus, for example, if Auv £ 0, we choose A =u = 2 and v = 1 and w1th
"these selections we have the following: o

3.1 Proposition. Let C be the ground field, v11, 712,721 and Y22 be odd elements ™. - -

and let GL3(C; 2,2, 1) be the group of 2 X 2 matrices with entries in Alyi1, 712,721 5
v22] —the exterior algebra generated by v11,712 V21, V22 Let g+ be an element in
GL»(C;2,2,1), and let z;; and &; be the projection maps defined by z:;(g +Y) = 8;;
and £:;(g +Y) = vi;. Define a multiplication low in GL2(C;2,2,1) by

(zzj) = Zpl (xzk xk]) + ( 1)Z+L *(&k)p2 (gkj)

k=1
m*(&;;) Z( 1) *p; (2 )p5 (Exs) + P (Eix)P5 (Th7)-

The left invariant supervector fields associated to this multiplication are

2
~ 0
Xpg =) Thps— +&kpa—
pg é kpaxkq ékpagkq

satisfying
[qu,er] = 5qups -4 Xrg,

[qu, YTS] = 51'(1YPS - 5PSY;‘117

[Y;m Yes] = — 6rqXps — 0ps Xr
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and, by setting

o = —X11 — Xo2, 21 = = X1 + X2, o = —X12, 23 = =Xy,
yo= Yii+Ye, p1= Yii—Ye, yv2= Y, ys= Yo,

we recover the Lie superalgebra associated to the parameters A=p =2 and v = 1.

Sketch of proof. It is a straightforward matter to check that the given multiplication
morphism is associative. The identity morphism id is given by

id T = 45 and id*&i; = &ij,
whereas the inversion morphism « is given by
o (i + &) = ¥is = (YY) + (6v8*y) 5 = (68)y); + (8)y)
" where

, 1 f Tae  —xio
Y = (¥i5) = (211222 — T12221) 7" (_;zl x1i9> and &= (&;)

We shall see in §4.3 below how to compute the left-invariant supervector fields for
this multiplication morphism and verify that they are indeed those given in the

. statement. The important thing to.note is that the correspondence zo — —Xi; —
Xa2, etc., given in the statement, sets up a bijection with the Lie superalgebra
9[2(C;2a27 1)- '

Remark. The multiplication law given in this proposition was taken from [17]. It
has been shown there that the special form of this matrix product, actually corre-
sponds to the composition law for two endomorphisms on the graded vector space
of dimension (2, 2) (see also other references by the same author in [17]). Note that
the supergroup defined by this multiplication law has sometimes appeared in the
literature under the name Q(2).
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4. LEFT-INVARIANT SUPERVECTOR FIELDS IN LIE SUPERGROUPS

We want to determine the left-invariant supervector fields for each rnultiplication
law we have found. In order to do that, we first have to know what conditions
must such supervector fields satisfy in a coordinate-free manner and encapsulate
that information inside some appropriate commutative diagram. Before we explain
that, we remind ourselves that every supergroup comes equipped with a special
morphism that plays the role of the identity element: € : (G, Ag) — (G, Ag)
such that mo(id,e) = id = mo(g,id) (see [3]). Let us use a similar morphism
€ : G — G in the C*-category to understand first what the commutative diagram
for left-invariance should be in ordinary Lie group theory.

Let G be an ordinary Lie group. A vector field X : C®(G) — C*(G) in G
is completely determined locally by the values Xz; on a given coordinate system
z;. In order to find these functions, we define the vector field X: C®(GE xG) —
C*(G,x G) in such way that Xplf =0 and )?pgf =pi X f, for every f € C®(G),
and define €@ : C%°(G x G) — C°(G) by ¢ p; = id* and e p§ = &*. So, X
is a left invariant vector field if the diagram

(G x @) P, 0o(G x G) —F— C%(G x G)

2| Jeor |

C®(G x G) — C®(GxG) ——  C=(G) , , ’
. p1,m)* e(2)* - i

commutes, ie, if " 0 X o(py, m)* = &®” o (p;, m)*oX. We claim that a completely
analogous diagram can be used in the theory of L1e supergroups to determine the ' fy |
left-invariant supervector fields. : : i

4.1. CaSE GLs(F; \, 1, 0) :

Let X = Zm nAmn o + Brns2— ag be a supervector field. In order to find |
the superfuncm_ons Apn and Bn, we will use the above assertion. According to ' !
the multiplication law for this case (see §3.1) it is easy to find that £*z;; = d;; and ’

€*&; =0, and then, e*f = f(n).

Defining X = Zm nP3Amn g p e+ pZBm"E’p;%J;" a straightforward computa- ]
‘tion shows

4508 =3 iy (1) + (Bu(]l) : 22@1)) -y
k=1

~(u— %) (Ell(ﬂ);§22(1)> <§11 ';‘522> T, - . ‘

zg (X 5) _Bl] + Z&kAkJ (]]-) ik(l)fkj

k=1

L (Bu(ﬂ) + Bas (11)> Entis

2
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So, we can write X =3 KM(IL)XW + Bpg(1)Yy,, where

2
1o, 0 0
Xpg = ;xkpﬁ + fkp’éa"; — &gk gép_k’

TR €11 + &2 : 9
Yoo =ge T '— { > <(- —#) (—1—12——> Tij +ﬂ;mik§kj> Er

i,j=1

—E Z §zk£k]a§ }
ij

i,5,k=1
and they satisfy
[Xpg, Xrs] =0rgXps — Ops Xrq,
[Xpg, Yrs] =0rgYps — Ops¥rq-
By our previous considerations, if Z = } apgXp, and W = Yop s brsXps are
supervector fields, then [Z, W] = 3_, .([a, b])i; Xij;, where a = (apq) and b= (brs)
Then, by setting
To=Xu+Xe m=Xn-Xe 22=Xn 23=Xn
Yo = Y11 + Y22 y1 = Y11 — Y22 y2 = Y12 ys =Y

we recover the Lie superalgebra with parameters [A, pu, v = 0].

4.2. CaseE GLy(F; A # 0,0,0)

.0
Let X = A ' Bmn
€ Z ™mn ammn + Dmn 8 g
multiplication morphlsm found in §3.2, a straightforward computatlon shows that

X will be a left-invariant supervector ﬁeld if and only if
X =Ag0(1L)Xoo + Az (1) Xij + Boo (1) Yoo + Bi; ()Y,

be a supervector field. According to the

where
Xoo =Zoo axoo >
8 3

Xzy —szz +§L7, é. éjk 65
8 A

Yoo = BE0n 51300500 700"
8

Y—i j =+7

78

Actually, this result came from e*zop = 1, €*zs; = &5, €*éoo = 0, €*&; = 0 and
then e*f = f(1). Furthermore, it is easy to prove that

[Xo0, Xrs] =0, [Xpg, Xrs] = 6rgXps — Ops Xrg»
[Xo0, Yoo] = [Xpg, Yoo] =0,
[Xoo0, Yrs] = [Xpg: Yrs] = 0rgYps — OpsYrg,
[Y00, Yoo] = —)\Xoo , [Yo0,Yrs] =0,
[Yog, Yrs] =
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thus realizing the [A # 0, u = 0, v = 0] Lie superalgebra equivalence class.

4.3. CaseE GL»(C;2,2,1)

Let X =5 Amn——a— + an—a—— be a supervector field. According to the
R OZmn ¢

multiplication morphism given in Propgzs?tion 1 §3.4, we can check that e*z;; = d;;
and e*&;; = 0, from where we know that €*(f) = £(1), for any given superfunction
f. A straightforward computation shows that X will be a left-invariant supervector
field if and only if

e 0 X o (p1, m)* pizi; =@ o (pr1,m)" 0 Xp3zss,
e®" 0 X o (py,m)"p3&i; =¥ o (p1,m)" 0 Xp3&is-

Now, the first of these conditions leads to

e®" 0 X o (py, m)*p3zi; = €@ o X {pizarpizr; + (1) préinpsti; }
=e@" {ps Arspizir + (1) p; Bripiin }
= 34 A (1) + (1) € By (1)

Similarly, the second condition leads to
@ o X o (py, II})*Pgﬁij = (_1)i+k$ij§kj (1) + & Ay (1).
On the other hand,

@ o (p,m)* o ngxij = Ay,
€@ o (p1,m)* 0 Xp3&i; = By

So, we conclude that X is a left-invariant supervector field if and only if
X = Ay(1)Xy; + By (1)Yy,
]

where

2

=0 (S0t + (Voo )

k=1

where (—1) appearing in Y;; can be included into Eij (1). As we mentioned in
Proposition 1 §3.4, these supervector fields define the Lie superalgebra on the equiv-
alence classof A=2,p=2and v =1.
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5. COMPACT REAL FORMS

Let us consider the real Lie superalgebras uz (A, 4, v) with underlying Lie algebra
us, that arise after changing the basis in gly(C; A, u,v) by wo = I, ws = iH,
ws = E—F and w; = i(E+ F), as usual. By letting 7 as before, a change of parity
map, we have that the symmetric bilinear equivariant map I' : us X us — uy that
gives the Lie bracket for any pair of odd elements, where I'(z,w) = [ (2), 7(w)], is

I'(wo,wo) = iAwo
T(wp,ws) = tpws T'(ws,ws) = 2ivwg
T{wg, ws) = tpwe T(ws,ws) =0 T(ws, ws) = 2ivuwyg

P(wo,wl) = ipwl I‘(wg,wl) =0 F(wg,wl) =0 F(wl,wl) = 2ivw0.

Then, in order to have the compact real form for GLz, A, and v have to be

restricted so as to be purely imaginary.
As in §2, we have faithful representations for all these Lie superalgebras in su-

pervector fields of the supermanifolds F2/2 and F®I3:

5.1 Proposition. Lie superalgebras in the equivalence classes of

A>0, p#0 <0, p#0

<0, pu=0
vpu#0, A=0 Ap#E0, v=0
p#0, A=v=0 A=pu=v=0

admit an ezplicit realization in terms of supervector fields in the supermanifold
R212 with local coordinates { z%,2%; ¢*,(%} given by

W3=i(z1%—225%+gl.a_‘z_l_g2a_?z_)
W;-z’(z‘—l—l— 1622+§25%+¢1 52)
UCN RX SR RX
Zl=i6(425;+C1%)+zd(z2@+ 13%2)

where A\ = 2gk, p = eg + dk and v = ed. The Lie superalgebras lying in the
equivalence class of A\v > 0 and p = 0 admit a realization as above but in C?I2.
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5.2 Proposition. Lie superalgebras in the equivalence class of v # 0 with p = A =
0 admit explicit realizations in terms of supervector fields in the supermanifold R313
with local coordinates { 2%, 2%, 2%; ¢°,¢*, (%} given by the same expressions for W
(k =0,1,2,3) and Z; (£ = 1,2,3) in the proposition above (corresponding to the
parameter values d =1 and e = v), together with,

Zo = izo aico

5.3 Proposition. Lie superalgebras in the equivalence class of A # 0 with u =
v =0 admit explicit realizations in terms of supervector fields in the supermanifold
R31% with local coordinates { 2°,2%,2%; (°,(*, (? } given by the same expressions for
Wi (k=1,2,3) and Z; (£=1,2,3) in the proposition above (corresponding to the
parameter values d =1 and e = 0), together with,

15} 1o}
i o_~ 0 _~
Wo=i(< g5 +¢ agO)
and
27 8¢°

In order to find the multiplication law for representations given in Proposition
5.1, we use following facts

L

. 0 A 0 |

Zo =Z(Coa—zﬁ+—zo—‘>. ‘ U
|

A . ‘ I

T/V(fz-" =ik ] W:le = gk, W?f“'z2 = (—z')"’z2 ’ . i
2kl = (—1)k27 W2kl = —(—1)F2? W2kHEE = (—1)k2t

W2k = (—1)k7 Wkl = (—1)%i2? WEkH122 = (=1)Fizt. ;

It is easy to see that,

2zt o eto 21 . 21— eits 21 |

2 ito 2 2 —it3 2 B!

. ) etz . ) e z
Tw,™ = Exp(teWh) : (s oo (1 Tw," = Exp(tsW3) : (1 s eits 1 :
: - i ;i‘

CZ > e'ltO CZ Cz > e—zt3 C2 “

2t > costaz! — sintyz? . i
22 > sinty 2z + costyz? !
¢!+ costall —sinta(? |
¢ = sintaCt + costa? :‘

T, = Exp(t:W3) :

24— costyzt + isinty 22
2% > isinty 2 + costy 2®
¢t costy ¢t +isint; 2
% isint ¢t + cost; 2

Tw,” = Exp(t; W) :

then, if I'; = Exp(toWo) o Exp(tsW3) o Exp(t2W>) o Exp(t; W1), we obtain
36




2t azl + 22

) 22 B2t + 627
g " Cl — O‘CI +,Yc‘2
¢ e BC +6¢3,

where
a = (cost; costy +isint; sinty) giltotts)

B = (isint; costs + costy sinty) eiltorte) |

v = (—cost sinty + ¢ sint; costa) gilto—ta)

8 = (cost; costz —isint; sints) eilto—ts)

and we can see that, up to €0, § = @ and v = —. On the other hand,
2t 2t + ikt 2t 2t +iens
22 2% + ik (? 22+ 22 —ien(?

T'2,*= Exp(020) : T2,*= Exp(rsZs) -
2" =Exp(020) 1 1y 1y gor T2 =ER2) 3 0 g

¢t (2 +igmo2® ¢ (2 —idry2?
2l 2t —emn(? 2t 2t +ien(?
22 22 +endt 22 2% +ien(t

I'z,"= Exp(n222) = Iz, "=Exp(nZ1) :

e P —dnz® ¢t +idn 2?
G 2+ dnit G C+idn2t
and, from I'* = Exp(10Zo) o Exp(1323) o Exp(1225) 0 Exp(m1.Z1), we know that

2 (1 + egroms) (1 — iedfzv'l)'zl + te(—g7o + dr3) (i1 — T2)22
+ (ko + ers)(1 — iedmym )¢ + e(1 — dkroms) (it — )2
22 5 —ie(gmo + dm3)(imy + )2t + (1 — egroms) (1 + iedm)2®
+e(1 + dkroms) (i1 + 72)¢t +i(kmo — ers) (1 + iedramy )¢
¢t —i(gmy + dms)(1 — tedmemy )2t + d(1 — egroTs) (i1 — T2)2%
+ (1 4 dkroms)(1 — tedmem )¢t +id(—kTo + eT3) (i1 — )¢2
¢ —d(1 + egroms) (iny + 72)2t + (g7 — d73)(1 + jedmemy)2”
— id(kTo + ems)(im1 + 2)¢* + (1 — dkroms) (1 + iedramy ) (2.
5.1. CasE [\, p,v = 0]

By considering e = 0,

(2! 2! + ikt
22 = 22 +ikTo(?
s i(gTo + dr3)2t + d(imy — 12)2?
+(1 + dkroTs) ¢t — idko(im — 2)(?
= d(in + )2t +i(gmo — dr3)2?

L —’idkTo(iT1 + 7‘2)41 + (1 - dkTOTS)C2-
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Let ¥ =Tz o™, then

1 1 1
14 (iz) =g<§2) +kp0g<g2)7
(1 21 Cl
v (C‘z) = g(gpoll + dp) (zz> + g(1 — dkpop) (C2>7

which is actually as in section §3.1, but po = i7p and p = (inT_st iT__‘:;?), then

we know that

g’ =g g+kpog'(9pp1l + dp') g,
p61= p{) + Po,
P =p+g ' g—dkpo(g™ ' 8)°
and|it is easy to find the multiplication law (g’,i7{,47") - (g, i70,¢7), which is

AL, . . . . . 1. . 1.
(g’ g —517'{,270 g g+uito g i’ g, ity +iro 4T + g i’ g —pite(g Tt iT’ g)2> ,

where i1’ = ( ins iT{f,Té) and it = ( iTs iﬁ?”z).
Ty —Ty —iT3 iTy—T2 —%T3
Simple computations show that left-invariant supervector fields associated to this
multiplication law. are the same as those found in §4.1, associated to the multipli-
_ cation morphism ’

2
N )\ ¥ + 3 99 * + A& 5 . N
m" Z;; = {1 + (g — 5) (plfn ) pl&n) (pzéll 5 p2§29) } prikpgxkj
k=1

2

p3&11 + p5éas .

+p <—)“—~2; > pizapiérepsze,
=1

2

m* &; =p3&i; + Y D3yaDiErep3Te

k. f=1"
> 2
03611 + p3laz ~ "
— K <L§—7—) > piyapilepsTy; |
k=1
where (yi;) = (z11%22 — Z12%21) 7" < 22 _xlz), that is
=21 11

2 8 o . 8
Xpq —;xkpax—kq +§@E —équg;,

_ 0 by 2 A S+ &2 2 .\ 0
Y; “agpq+ 9 Z <(§_l-") (T Tij +,ukz=;xzk§k] %

i,j=1 ij

2 8
—K Z &kfkj@ )
ij

%,7,k=1
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so that they correspond to the equivalence class of [A, i, v = 0].

5.2. CASE [A # 0,u = 0,v = 0]

In the case [\ # 0, = 0, v = 0], which comes from Proposition 5.3, we have the
integral flows for even supervector fields ~

( 20— gtto 30 ( 20— 20

PO B 2t efts 2l
2 2 22 —its 2
* Z- =z " Z7 e e gt
Twe™ = Exp(toeWo) : (0 1 eito (O L™ = Exp(tsWs) : < 0 (O
Cl KN 4.1 Cl — eits C‘l
$ C? > (2 L <2 — e—itg CZ

( 29 20
21— costaz! — sinty2?
22+ sintaz! + costaz?

: i
I’wz = EXp(tsz) M < CO — CO }

Cl — COStzCl - sintg(2
~ L ¢+ sinta(t + costal? ' ‘?‘
¢ ZO > 2,O ‘

z! > costyzt +isint; 22
22 vy isint 2zt +.costy 22
(=0

¢t costy ¢t +isinti¢?
L % = isint; ¢ + costy 3,

then, if Iy = Exp(toWo) o Exp(t3W3) o Exp(t2W2) o Exp(t1W1), we have that

le* = EXp(t;[WI) : <

(20— €20

2t = azt + 427

. 22 B2l + 622

g Co' — 6(0 ‘ ;1}‘
¢t alt + ¢ - -

[ ¢ BC +4¢2, '

where
€= egtto ,
o = (cost; costy + isint; sints) e,
— (ra - it
B = (isint; costy + costy sinty)e™?,

4= (—costysints +isint; costy)e s,

6 = (costy costy —isint; sinty)e s
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and we can see that § =@, v = —f and ad — By = 1. By computing the integral
flows for the odd supervector fields

( ZOP—)ZO-F?:T()CO ¢ 20 20
2t 2 24— 2t
2 2 .
zZi= 2z 22 22

I'z,"= Exp(m02o) : o T'z"=Exp(r323): 00

A
¢0 (0 +z—2-7'0z
e L it

¢t g

\C‘Z._)CZ \Czl—)gz—ingZ

( ZO — ZO ( ZO — ZO

2t 22 2 2t

2 2 2 2

. _ . Z°rz * _ . Z°—=Zz

I‘Zz T EXP(TQZQ) R CO . CO rzl = EXp(T;[Zl) : CO o CO
Gt —2? G +im2?
L (2= P+ 2t L 2= +in2t

and, from I = Exp(19Zp) o Exp(73Z3) o Exp(7223) o Exp(m1 Z1), we know that
(20 > 2% +irp°

2t 2t

22 2%

.

A
¢ (0 +_z_'§¢0z°

izt + (i — )2 +
L Cz — (i’i’]_ + TQ)ZI — 7;7'322 -+ Cz.

Putting ¥ =I'; o I'" we find
(e O epo O
\I}(Z)—(O a)Z""( 0 0)(7

A
[ = 0 e O
wo—(sz" a,,>”<0 o)
where

2° ¢° A . 8
_ 1 _ 1 . _ 173 1Ty + T2 [«
zZ= (Zz),c_<C2))p0—17'07p_<7:7_1_7.2 —i’Tg >’a—(’y 5)

z ¢

In order to find the solution to the problem ¥” = ¥’ o ¥ we use the one found
in §3.2. We know that the solution is given by

A
e =¢€e(l— 5,06;)0) a’ =a'a

Po = ro+ po pl=p+aipa
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and that the multiplication law for elements (g’,v') = ((50 :,) , (’;5 Z,g, )) and
(g,7) = ((8 :) , (i? 3)), is given by

. _ [ (€€l = 3irhim) 0 iTh + 7o 0
(g 77) : (g,')’) - << A 0 a'a ) 0 i+ a‘liT’a ’

o . [ N . ity iT14T
where 77/ = (.3, ™72 ) gnd iy = [ 7B T2
. 'le—T2 —1.T3 T —T2 —1IT3

Once more, simple computations shows that the left-invariant supervector fields
associated to the multiplication morphism (see §3.2)

A
* * * *
m* Zop =p) TooP5T00 — §P1$oopﬂoop1§oopz§00,

>
*

*
m* z;; = E DITikD3TE
k=1 |
* * *
m™ oo =p1 o0 + P5500,

2

- m"&; =psli+ Y p3(eT ) piErens e,

k=1
are
1]
- Xoo =Zoo 700’
2
E o 8 53]
X5 = i i —&; ;
3 kZ:;xk Fons + &k B ik 5
15] A
Yoo =560 :iwoofoo%,
15]
Yi; =
706

and that they define a Lie superalgebra which belongs to the equivalence class
of [ A#0,p=0,v=0].
5.3. CASE[A = 0,u = 0,v # 0]

In the case [A = 0, u = 0, v # 0] we know, from Proposition 5.2, that the integral
flows for the even supervector fields are

(20— 20 (20—~ 20
21 efto 51 . z1 -y g¥fs 21
2 ity .2 2 —itg 2
z° > e¥o Z° e Mz
Tuwo™ = Exp(toeWo) : s (0 Pys™ = Exp(t3W3) : < (0 s (0
4-1 — eito Cl Cl — eit3 Cl
L 4-2 — eito 4-2 L 42 -y e—itg CZ
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(20 2°
2! > costyz! — sintyz?
22 > sintyz? + costez?
(0
¢t costa(t —sinta(?
[ €2 sinta¢t + costa(?

Ly,” = Exp(t2W2) :

¢ 20 zO

2z} > costyz! +isint; 2?

22 v isint; 2t + costy 2@

O

¢t costy ¢t +isint 2

L (% — isint; ¢t +cost 3.

Then, if [y = Exp(toWos) o Exp(tsW3) o Exp(t2W2) o Exp(t1W1), we have that

I‘wl* = EXp(t;[Wl) :

(20— 2°
2t a2t +72°
) 2Bt 462 -
870 (0 (0
e alt +¢?
L ¢% = B¢ +6¢3, i

where

a = (cost; costy +isinty sinty)etttotts)
B = (isint; costs + costy sinty)eHfotts)

v = (—costy sinty +isint; costy) e'®os),

6= (costy costy —isinty sinty)efo~%) .

as before. The integral flows for the odd supervector fields are

(20— 20 : (29— 20
2l 2t 2t 2t + vt :“
2 2 2 2 . 2 i
2% z° z° = 27 — w3’
Iz, = Exp(m02) : . Tz, *= Exp(r323) 4 B
° O O +in2® ® O (0 _ ”li
¢t N N S T |
L (2= (P ( (P (P —im32? i
4 zOHzO ( ZOI—-)‘ZO. “j
2V 2t — (2 2t 2t +ivn 2 '
2 2 1 2 2. 1
22z +vn( z° = 2% +ivni(
Tz, "= Exp(r22s) : I'z,"=Exp(nZ;):
¢ (0 ‘ O ¢
s - 1p2? s P+ im 22
L= (2 4+ 2t L P (2 in2?

42




and computing I'* = Exp(70Zp) o Exp(73Z3) 0 Exp(72 Z2) oExp(71 Z1) on the local
coordinates we get
(20 1y 20
2! = (1 —vmin) 2t +vim(in — 72)2°
+vir3(1 — vrin )¢t + v(in — 72)¢?
22 —vim(im + 1)zt + (1 + vrim)2?
+u(im + )¢ — vits (1 + vrin )(?
% 0 +imp2°
! il — vmin) 2t + (im — 72)2?
+(1 — vrin)t + vims(ing — 2)¢?

T/

2

C e (in + )2t —irs(l — vrim)2?
‘ L —vits(imy + 1)t + (1 = vrim) (2.
Putting ¥ =TI'; o '™ we finally obtain:
¢ ZO — 20

22— [a(l —vrin) + vBits(in — 1)]2t

+[7(1 = vrim) + véirs (im — 12)]2?
+vairs(1 — vreim) + vB(im — 72)]¢*
+ryiTs(1 — vraim) + vé(im — 72)]¢3

22 [—raims(in + 12) + B(L + vrain )2
+[—vvyiTs(ity + T2) + 6(1 + vraimy )22
+Hva(in + r2) — vBirTs(1 + vrin)JCt
+vy(im + 72) — v8irs(1 + vrpim )]

T O (O +imp2°

(e a1 — vnin) + BEn — m2)]2t
+yiTs(1 — vmim) +6(im — 1)]22
+la(1l — vrim) + vBirs(in — )¢t
+¥(1 — vrim) + véits(iny — 2)]¢?

¢ a(in +7) — Bits(1 = vrein)]et
+[y(im + 7o) = Girs(1 = vryimy)]22
+[—vaits (it + =) + B(1 — vraimy)|Ct

L +[—vyirs(in +72) +6(1 — vraimy)]CE.
Defining
p=(viniiy i) et a= (PRI i)

we have

) = (é gOP> 2t (8 ng) S

10 =7 )7+ (5 ge)t
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ZO CO
wherez= | z! | and ¢ ={ ¢* |, but this problem is similar to the one found
22 2 ‘
in §3.3, and then it is so difficult like the one found there.
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6. MAXIMAL TORUS

From the classification in §5 we know that

T(wo,wo) = iAwo, T(wo,ws)=ipws, I(ws,ws)=2ivwy

and we have realizations in supervector fields in R21> and R313 supermanifolds
given by the appropriate restrictions. We now want to compute a general compo-
sition law in terms of the arbitrary parameter values [\, i, v].

6.1 Proposition. Lie superalgebras in the equivalence classes [\, p, v] admit an
ezxplicit realization in terms of supervector fields in the supermanifold R22 with
local coordinates {z*,2%; (*,(*} given by,

R 8 ., 0 _
W°=Z(215;f“‘5;+¢1@+<°a—gz)
s ) !

Wg_Z( 52 1_Z +C a(:l C 842) ifi
, ) ) ~ i

Z""k(Cl T+¢ azZ)Hg(zla_cT“Qa_G) ‘111
9 5 |

. 1___ 2 Y . 1 _ 7 _.,2_ |
Zs =ie (¢ 5t ~ ¢ azz)“d(z act ~ ¢ agz)’ |

where A = 29k, p = eg +dk and v = ed. H

The integral flows for the even supervector fields in the Proposition above are

21 5 efto 21 zt s efts gl
2 ito 2 2 —its 2
. ) z% etz . DRl z
F'u.zo = EXp(tOWO) . (l s efto Cl Fwa - EXp(t3W3) ° Cl — eit3 Cl
C2 > eito C2 Cz — e—ita 427

whereas for the odd supervector fields we have

2t 2t + ikt 2t 2t +iers(? ‘3‘?“"‘

> > . 2> 2 2 ; 2

z° = z° + ik 2% 2% —ieTs( 1

Ty *= Exol(m Za) : *= Exp(maZ3) : i
Zo p(70Z0) s (L igrost Zs p(7323) s (Lt idm2t il

= ¢ +igne2? (2 (2 = idrs2?.
Note that V W‘
zl s giltotta) 51 il
22 1y gilto=ts) 2 ’
(L s eiltotts) I w‘ﬁ
(2 s eilto—ts) 2, .

* __ Tk *
Ie =T%, oTh,

By setting o = e¥(*o+%s) and § = eilfo~s) we have a correspondence

. a 0 }
PgH(O 5)' . ;1‘
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3)

Furthermore,

2t = (1 — egitoims)z! + (kiTo + eir3)(?
22— (1 + egitoiTs)2? + (kito — eims)(?
¢t = (giTo + dims) 2t + (1 — dkiToirs)(?
2 = (gimg — diTs)2z® + (1 + dkiToiTs)(?

* * .
Z°1Z,
and, by choosing ¥ =T o' oT% , we can write

¥U(z) = g(IL — egpops)z + g(kpo + eps)C,
Y(¢) = glgpo + dps)z + g(U — dkpops)(,

where

_ (i O i 0 NEs (¢
PO-(OO 'iTo)’ps—(Os _i73)7Z_<Z2>7C_<C2>'

From ¥"” = ¥ o ¥ find the following:

(1)

8" (1 —egpopz) = &' (1L — egpops) (1 — egpops) — &' (9p5 + dps) g(kpo + eps)
(2)- ) .
g"(kpy +ep3) = g'(kpy + eps) g(L — egpops) + &' (1 — dkpyp’) g(kpo + eps)

g"(gpo + dp3) = &' (1 — egpyps) g(gpo + dps) + &' (gph + dps) g(1L — dkpops)
(4)
g" (I — dkpops) = g'(1 — dkpips) (1 — dkpops) — g/ (kpy + eps) g(gpo + dps)-

Now, from (1), we have
(5)” , o, ; B ’ R
g” = {g'(1 — egpyp3) (1 — egpops) — &' (g9p5 + dps) g(kpo + eps)} (1 + egpf py).

Using this result in (2) and (3), we get

kpy + epy = {g' (1 — egpyp) g(1L — egpops) — &' (9P + dp}) g(kpo + eps)} " -
{&'(kpo + ep3) g(1 — egpops) + &' (1 — dkpopy) g(kpo + eps)}

95 + dply = {g'(1 — egpyps) g(1 — egpops) — &' (9Ph + dp}) g(kpo + eps)} -
{&'(1 ~ egpip3) g(9p0 + dp3) + &' (9P + dp) (1 — dkpops)} .

that

{e'(1 — egpips) g(1L — egpops) — &' (9P + dp}) g(kpo +eps)} ™ =

(8" )™ {(1 + egppps) (1 + egpops) + (9ph + dpt) (kpo + eps)}
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and then,

kpg +eps = k(py + po) + e(ps + p3),
9Py + dps = glpy + po) + d(ps + p3),

swhich implies

Py =pp+po and  p§ =py+ps
It follows, from (5), that

g” =g g{(1 — gkpypo) (1L — edpyps) + (eg + dk)pops }-

Simple computations show that (4) is satisfied with the results above. We can
then write the multiplication law for the elements (g’,i7g,¢73) and (g, i7o,iT3) as

A . .
(g' g {(}1 - —2-2'7'6'57'0)(11 — ViTgyiTs) + ,ui'rgi'rg} ,iTg + iT0, 975 + z7'3> .

This multiplication law exhibits the A, y,v parameters in general. In order to
find the left-invariant supervector fields, we use the techniques from §4 defining the
projection maps 11(g, iTo,T3) = g11, T22(8,%70,%T3) = a2, £11(E,170,973) = iTo

by

* * * A * * * £ j * *
m” zj; = p1Zj;P3%Tjj { (1- 5?1511?2511)(1 — vpi&aap5es) + (~1)7+1#P2§11p1§22}
m* &5 = p1&j; + P3&s5-

The identity-element morphism ¢ satisfying mo(e,id) = id = mo(id, €) is given

by e*(z;;) = 1 and &* (&) = 0. With these results we find that left-invariant
supervector fields are

o
X =21 e
0
Xy =222 B2as” ;
8 ( 8
2 1+ (1"t ) 5,
Y BEn Z; 11 22 b2y
5 5
Y; = f?) +I/Z$“fzz

Putting wo = X3 + X», w3 = X7 — X5, 20 = Y and z3 = Y> we can find the
[A, 1, v] equivalence class they belong to.
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- and &22(g,i70,17T3) = i73. In terms of them, the multiplication morphism is given -
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6.1. MAXIMAL TORUS AND SUPERTORUS

In the last section we worked with the maximal torus associated to the clas-
sification in §5. Thus, by choosing the Abelian Lie superalgebra generated by I
and H as even Lie subalgebra and () and w(H) as odd generators, we found the
corresponding maximal torus inside the ten real Lie superalgebra structures on gl,
obtained by restriction to the real forms u;. However, there is a related problem to
understand within the spirit that has guided us throughout this work: Namely, to
classify all Lie superalgebras whose underlying 2-dimensional Lie algebra is Abelian
under the assumption that the action of the even Lie algebra into the odd module
is given via the adjoint representation. These Lie superalgebras are classified by
symmetric bilinear maps I : g1 X g1 — go with no restrictions, since the Jacobi
identities are trivially satisfied.

Let go = Spang{w:, w2} be the Abelian 2-dimensional Lie algebra and let g; =
{mw1,mw2} be the go-module defined by the adjoint representation. Then

L(mw;, mw;) = G}jwl + G?ng

defines a Lie superalgebra structure for arbitrary parameters ij in R. A different
symmetric bilinear map I : g} % g} — gy would yield a different set of parameters
(6")%. The Lie superalgebras generated by 6* and (§')* will be isomorphic if -and
only if there is a Lie algebra isomorphism T : go — gg of the Abelian Lie algebra

‘(actually, any linear isomorphism T° € GLy will do it) and a linear isomorphism

S : g1 — g} such that I'(S(z), S(y)) = T(X(z,y)) for any z,y € g;. This condition
can be written in terms of matrices as

SEB)S = T116" + T1262,
St (9')25 = Tg]ﬂl -+ T2292.

Therefore, we can approach the corresponding classification problem, whose so-
lution is stated in the following proposition. Its corollary, on the other hand, shows
what the relationship is between the maximal tori found in the last section and the
supertori given by the classification problem just posed.

Proposition. The group GL2(R) x GL2(R) acts on the left of Sym,(R) x Sym, (R)
via

(T, S) - (91,92) = (TuS‘l -6t +T125—1 - 92, T21S_1 -9t +T225_1 - 92) ,

where Sym,(R) is the set of symmetric 2 x 2 matrices over R and S™1 -6 =
S=19(S~1)? is the natural left action of GL2(R) on Sym,(R). This action defines
seven different orbits whose representatives 6% and 62 are listed in the following

table
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1 (23) (32)
: (32) (32)
3 (:2) (39)
4 (:2) (59)
5 (5%) (32)
6 (:2) (53)
7 (:2) (23)

Corollary. There is a surjection from mazimal tori in §6 , onto the tori obtained
from the action just defined.

Proof of corollary. For real cases in A, ¢ and v, we know that 6t = (3 2) and

6% = (2 g) We can see these cases in terms of the above Type as follows:

Type A ps v

1 ~ [0,0,0]
[0,0,1], [1,0,0]

[1,0,1]

[1,1,1]

[1,0 -1}, 6,1,0]

[1,1,-1]

[0,1 1] [1,1,0].

N Oy Ot W N

Proof of proposition. Let us explain what the philosophy of the proof is. By means
of the action (6%,62) — (S~161(S~1)t, S~162(S~1)?), we try first to see under
what conditions can both S~161(S~1)t and S~16%(S~*)? be brought to a diagonal
form. Once they are both diagonal, we can further act with an appropriate group
element T € GL»(R) so as to simplify each % = T;; S~101(S~1)t + T3,S~102(S71)¢
(i = 1,2) as much as possible. There are some cases in which it is impossible
to simultaneously have S~16*(S~!)! and S~'6%(S~!)! in diagonal form. These
cases are then treated separately. At the end, one only needs to check that with
the chosen representatives one really reaches any pair of symmetric matrices under
the given GL2(R) x GLa(R)-action and that the representatives really belong to
different orbits.

There are a few simple cases where one immediately knows that both, §* and 92,
can be simultaneously diagonalized. Say, if from the outset, §* is proportional to
62, then both can be diagonalized at once with the same S € GL2(R). If this is the
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case (say 82 = af!, with a # 0), several subcases have to be considered: Namely,
either 6 is positive definite; or 6! is negative definite; or ' is nondegenerate but
nondefinite; or §* has rank-one with a positive eigenvalue; or 6 has rank-one with
a negative eigenvalue; or §* is identically zero.

In all these cases, by choosing an appropriate T' € GL2(R) one can easily see
that if the eigenvalues of 6* either have equal signs, or one of them is zero, then
6 = Ty, S~101 (S 1)t +T1,5716%(S~1)¢ can be chosen so as to be either the identity
ma’cnx or the diagonal matrix with diagonal entries (1,0) if ' was rank-one, or
diagonal entries (0,0) if ' was identically zero. In any case, the choice of T can
also be adjusted so as to have 82 = Th; S™16%(S71)? + T2 S7262(S~)¢ identically
zero. This accounts for the first three types in the statement of the Proposition,
plus Type 5.

There are other less obvious cases where one can simultaneously diagonalize
6' and 62: Namely, we use the well-known result that this is the case, provided
one of the two bilinear forms —say, §'— is invertible and the product (6')716% is
diagonalizable (see for example, [Horn, R. and Johnsor, C., Matriz Analysis, pp-
228-234]).

So, if #* and 62 are not proportional to each other and 8! is positive defi-
nite, then an appropriate choice of S will bring S72¢*(S™!)* into diagonal form

with diagonal entries.(1,1). Whence, the identity matrix. On the other hand, .

regardless of what form S~16%(S~!)! might have achieved with this choice of

S, it is still a symmetric matrix and hence diagonalizable. Actually, by means
of a rotation S = (_c‘;fnﬂﬁ z::;:’;), which is an element of the isotropy group at

§191(S—1)t = diag(1, 1), we can bring S~162(S~1)¢ into diagonal form which, un-

der the assumption that #* and 62 were not proportional at the outset, have different -

diagonal entries. Therefore, the theorem we have just quoted applies and we can see
. that the new diagonal entries of the matrices % = T S™101(S™1)t + T3S ~162(S 1)
(i = 1,2) can be chosen so that the product of T' with the matrix M whose columns
are the diagonal entries (1,1) of S~18*(S~1)? and (a,d) of S™16%(S™1)%, is equal
to the identity matrix. Whence, the representative pair for this orbit is that listed
under Type 4 in the statement. Besides, it is easy to see that the same argument
applies if ! was negative definite, since the isotropy group is still the same in this
case. '

The case that remains to be analyzed is that when 6 is nondegenerate, but
nondefinite and 2 was not proportional to §'. With an appropriate S € GL2(R)
we may assume that S~16*(S~1!)t is diagonal with diagonal entries (1,—1). The
isotropy group of this element is formed by the matrices of the Lorentz group

and, by choosing S = ( coshw —smh‘”) it is easy to see that S™162(S~1)? will be

—sinhw coshw
diagonalizable by means of such a Lorentz transformation if and only if tanh 2w =

m + -2, where we originally had S~ 162 (S = (‘; b) This will obviously be the case

if and only if the absolute value of - is strictly less than 1. But if this condition
is fulfilled, then a T can be chosen as 1n the previous paragraph and therefore fall
into Type 4.
Problems in the Lorentz-transformation argument arise when the absolute value
of == 2” is either strictly bigger than 1, or exactly equal to 1. In the first case we have
a typ1ca1 situation of two symmetric matrices that cannot be simultaneously dlago—
nalized, but still have the chance of bringing the pair S™*6*(S~1)* and S~16%(S~*)*
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into the representatives given in Type 6 of the statement. The condition that is
definitely different, on the other hand, is that when % is equal to either +1 or
to —1. In this case, S716*(S~1)¢ and S~14%(S!)! can only be brought into the

representatives given in Type 7 of the statement.
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! APPENDIX

LIE SUPERGROUPS AND LIE SUPERALGEBRAS

A.1 Supervector spaces. Let F be R or C. A supervector space V over F is a
vector space over I, together with a direct sum decomposition V =V, @ V1 and a
parity function |- | : Vo — {0} U Vi — {0} — Z3 = {0,1}, in such way that |[v| = p
whenever v € V,, — {0}. The supervector space V = Vo & V1 over F is also called
a’ supervector space when the field is clear. Elements in Vo — {0} are called even
and those in V; — {0} are called odd. The even and odd elements are also called
homogeneous. The supervector space V = V5 &V} is finite-dimensional of dimension
(m,n) if dim Vo = m and dim V3 = n (see [8], [10], [11]). X

A.2 Associative superalgebras. An associative superalgebra A over IF is an asso-
ciative F—algebra having the structure of a supervector space over F, A = Ao @ 41,
and such that its multiplication map m4 : Ax A — A satisfies ma(A4,, Av) C Apys .
for all p, vin Zs. In particular, the unit element 14 lies in the subspace Ag. An asso- ‘
ciative superalgebra A is called Zs-commutative if m4(a, b) = (—1)!4l¥lm 4(b, a), for » I
a and b homogeneous. A morphism between the associative superalgebras A and i
B is an F—linear map T : A — B of the underlying vector spaces such that: (1)
T(Au) C By for p=0,1, (2) T(ma(z,y)) = ma(T(z),T(y)) and (3) T(14) =15 _ |
(see (8], [10], [11). | i

A.3 Lie superalgebras. A Lie superalgebra g over F is a supervector space g = i

- go ® g1 with an F-bilinear map [-, -] : g x g — g satisfying: [z,y] = —(—1)/#I¥/[y, 2] |
and ’ '

(_1)'2”21[:37 [ya ZH + (_l)lz”y![z7 [27, y]] + (_l)ly”ﬂ[:% [Z,’JIH = 07 "

for any homogeneous z,¥ and z. An F-bilinear map [-, -] as above is also called , . %Hé;
Lie bracket. A morphism between the Lie superalgebras g and b is a morphism
T : g = b of vector spaces such that: (1) T(g,) C b, for p = 0,1 and (2) E
Tlz,yls = [1(2), T)}s (see [8], [16]). :

|
Remark. Any associative superalgebra A gives rise to a Lie superalgebra by defi-

ning the Lie bracket [-, -] : Ax A — A on homogeneous elements o and b, by letting . !
[a,b] = ma(a,b) — (=1)!¢!Plm 4 (b, a) and extending it bilinearly. 8

A.4 Example. If V = V, ® 17 is a supervector space over F then EndgV, the
space of F-linear maps T : V' — V, has a natural associative superalgebra structure
for the multiplication map mgng, v (T, S) = T o §, with respect to the Zy—grading, . |

(Endr V), = {T € Endr V|T (Vo) C Vo and T (V1) C 1},
(Endp V), = {T € Endr V|T (Vo) C V1 and T(1) C Vo}-

Therefore, Endr V has a Lie superalgebra structure [-, -] : EndgV x Endg V' — b
Endr V defined on homogeneous elements by [S,7] = S o T — (=1)!II71T 0 S and i
extending it F-bilinearly to Endr V. .

: By choosing a basis of V = Vo @ V4 ordered in such a way that the first dim Vo = m
! elements of it form a basis of V, and the last dim V7 = n form a basis of Vi, the
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Lie superalgebra Endr V can be realized in terms of (m + n,m + n) matrices with
entries in F, so that

@eeso={ (3 D)

o _Jf(0 B
(EndFV)12{<C 0)
and the Lie superalgebra structure is given by
Al 0] A2 0 | _ A1A2 - AQA]_ ’ 0
0 D;J)’\ 0 D2J| 0 D1Dy — Dy Dy
A O 0 Bx\]| _ 0 A1 By — B2D:
< 0 D1 ’ 02 0 ] - Dl Cz - CgAl 0
0 B 0 B> ] _ B1Cs + B4 0
o 0 /’\Cy O ] - , 0 i CiBy +C3By )
Remark. The definition of a Lie superalgebra can also be rephrased as follows:

Let V be a vector space and b a Lie algebra. Given a representation of Lie algebras
p:bh— EndV and a bilinear symmetric map I' : V x V — b satisfying

Acgl,(F) }
D € gl,(F)

B € maty,xn(F)
C € mat,xm (F)

(1) [p(x),I‘(u, U)] =T'(p(z)u,v) + ['(u, p(fI})’U)
) p(T(u,v))w =+ p(T'(w, ©))v + p(T'(v, w))u =0

for z €. and u,v and w in V, we define a Lie superalgebra g.= § @ V by setting
go = b, g1 =V and the Lie bracket '

[z +u,y +v]g = [z, 4]y + p(z)v — p¥)v + T(u,v).

Conversely, for a given Lie superalgebra g = go @ g1 with Lie bracket [-, -]; we
already know that g is a Lie algebra using the restriction of [-, -] to go X go; We
also have a representation p : go — End g; given by p(z)(v) = [z,v]g, for z € go and
v € gp; finally, we also have a bilinear symmetric map I : g1 X g1 — go defined by
I'(u,v) = [u,v], that satisfies (1) and (2) (as it follows from the Jacobi identities).

In a sense, therefore, a Lie superalgebra g = go © g1 is some ‘superstructure’ to be
built over the Lie algebra go. This point of view is quite useful for both, the general
theory and the explicit construction of Lie superalgebras (see [8], [16]).

A.5 Supermanifolds. A smooth (resp. holomorphic) (m,n)-dimensional super-
manifold (M, A) is a smooth (resp. holomorphic) m-dimensional manifold M to-
gether with a sheaf of associative Z;—commutative superalgebras A over M having
the following properties: Let A/ be the ideal generated by the sections of 4; in the
decomposition A = Ay ® A;. Note the Zs—commutative property implies that the
sections from A; are nilpotent. Therefore, all the sections in A are nilpotent. It
is then required that A/A be isomorphic to the sheaf C§7 (or Oy depending on
whether the supermanifold is smooth or holomorphic, respectively) and that there
exists some n € N such that N™ # {0} but N1 = {0}. Then, n is called the odd
dimension of the supermanifold.
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Now, N/N? has the structure of a locally free sheaf of A/N —modules; that is,
a vector bundle (the so called Batchelor bundle) whose rank is equal to the odd
dimension. We shall write £ instead of A'//AN? when we think of it as the sheaf of
sections of the corresponding vector bundle E — M. The nilpotent ideal defines
a filtration N* D N1 and gives rise to its associated Z—graded algebra Gr A =
SN /NL ~ A(N/N?) ~ AE. The natural surjection A — Gr.A gives rise to
a local isomorphism of Zs—graded algebras A(U) — T'(U,AE). The question of
whether this extends to a global isomorphism has been settled by several authors
under different assumptions. The first such result is due to Batchelor (see [2])
and it states that for any smooth supermanifold, its structure sheaf A is globally
isomorphic to T'(AE). Supermanifolds having this global property have been called
split or Batchelor trivial ever since. The main issue in Batchelor’s proof is the
existence of a partition of unity. Examples of non-split supermanifolds have been
given by P. Green [5], M. Rothstein [14] and Y. Manin [11]. By the mid 90’s Koszul
proved that a supermanifold splits if and only if a superconnection can be globally
defined on it. This amounts to have globally defined connections on T'M and E
(see [9]) which can always be done in the smooth category, but not always in the 3
holomorphic setting.

The simplest examples —and local models— of supermanifolds are the so called i
(m,n)-dimensional superdomains. They are defined by letting U be an open do- i
main in R™ (or C™) and taking E to be the trivial rank-n vector bundle over U i
—say, generated by some set {€2,&2,...,£"} of linearly independent sections, so \‘
that £1€2---¢™ # 0. A standard notation for such a superdomain is (U, C®(U) ® :

“A[EL, ..., €7D, A set of m sections zt, 22, ...,2™ in @,y CU) R AZF[EL 1. £ S I
are called even coordinates for the superdomain if their projections z!,22,... , T : i
under the natural map A — A/N (which in this case is just C=(U) ® A[¢Y, ..., £"] ' i
— C°(U) @ A°[¢L, ..., &7 ~ C*(U)) form an ordinary set of smooth coordinates ‘ f
on U. Thus a coordinate system for a superdomain (U,C®(U) @ A[E}, ..., ") isa ;:{5
set {yt, 92, ..., y™ ¢ (3, ..., ("} such that (1) {y*,v?,...,y™} is an even coordi- ‘i
nate system and (2) ¢, ¢2,...,¢" are sections in ;5o C(U) ® AZFFL[EL, ..., £7] » ‘
satisfying (*¢?---(™ # 0 (see [8], [10])- N

3 A morphism ¢ : (M, A) — (N, B) between the supermanifolds (M, A) and (N, B)
] is a pair (3, ©*) consisting of a morphism of sheafs of algebras ¢* : B — @.A over i
N along the smooth (resp. holomorphic) map @ : M — N, where for any open
subset W C N, 3. A(W) = A(g~1(W)). A very useful theorem (due to Leites)
states that morphisms between superdomains are completely determined by their i
effect on a set of local coordinates. More precisely: ‘

Theorem. Let (U, A) and (W, B) be superdomains and let {z?,... ,z™;&,... &} : ‘
be a coordinate system on (W,B). i
a) Let ¢* : B — A be any morphism of superalgebras. We consider the set 1
of sections y* = ¢*(z%) (i = 1,...,m) and n° = ¢*(&") (¢ = 1,...,n). E
Then, the set of sections {¥,--.,y™n*, ... ,n"} satisfies the following con-
ditions: (1) 4 € Byso CX(U) ® NHCL,... (7, (2) 1 € Byzp C=(V) @

! AZERL[CL ™) and (8) if u € U, then (y(u),...,y™(u)) belongs to W.

1'We shall write £1£2 instead of €1 A €2, etc.
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b) Let {y*,...,y™n,...,n"} be a set of sections in A satisfying (1), (2) and
(8) as above. Then there is one and only one homomorphism of superalge-
bras ¢* : B — A for which o*(z*) = y* and ¢* (') = 7'
¢) To every homomorphism of superalgebras * : B — A there corresponds one
a and only one morphism of superdomains (@, ¢*) : (U, A) = (W, B) such that
! ©* : B— @.A is the same as ¢™.

A.6 Example. Let R be the (1, 1)-dimensional supermanifold (R, A(R)), where
A(R) = C(R) ® A[7], so that R*! is Batchelor trivial for the trivial rank-1 vector
bundle R x R — R and 7 can be thought of as the global section t ~ (£,1) of
this bundle. An element f in the associative superalgebra A(R) can be written as
f = fo+ fiT, where fo and f; in C*°(R). This is a very important example because,
for any given supermanifold (M, Ayr), we have the one-to-one correspondence (see
[17)) ’

Ay +— Mor ((M,AM),Rlll) 5 |

where Mor ((M, Ay), RY?) is the sheaf of all morphisms from the supermanifold
(M, Apr) into RM'. The correspondence is given as follows: If £ € Ay (U) =
Aur(U)o ® Ap(U)1 so that & = & + &, with &, € ApuU)y (p = 0,1), then
@e (M, Ap) — R is defined —according to the theorem above— by letting
Pt = & and @iT = &1 . : i

_ This correspondence can be turned into an abstract algebra isomorphism. The : . i.‘
" ,algebra structure on Mor (M, Apr),R!?) can be given in terms of an abstract ’
algebra structure defined on R*! by means of the ‘sum’ morphism s.: RH* x Rt —
R, defined by '

s*t = pit + p5t and s*T =piT + P37 . “

and the ‘product’ morphism m : R x R — R defined by

m* t = pitpst + pITP5T and m* T = pitpsT + pIT 5L,

| where p; : RUI xR — R are the projections. One can check that the morphisms
| s and m satisfy the appropriate commutative diagrams that state the associativity
' and distributivity laws (see [17] for further details).

A.7 Superderivations. Let 4 be a Z;—commutative associative superalgebra
1 with multiplication map m4 : A x A — A. Define Der A = (Der A)o ® (Der A);
where

(Der A), = {X € End A|X(ma(a,b)) = ma(X(a),b) + (—1)**ma(a, X (b))}.

It can be proved that Der A has a Lie superalgebra structure by defining the Lie
bracket [X,Y] = X oY — (=1)/¥II¥lY 0 X, on homogeneous elements X and Y,
and extending this definition bilinearly to the whole Der A. The sections in Der A
are called superderivations of A; hence, Der A is called the Lie superalgebra of
superderivations of A.
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A.8 Ordinary differential equations in supermanifolds. Any vector field X
on a smooth manifold M can be identified with a derivation X € Der C*°(M) [18].
Similarly, vector fields on a supermanifold (M, A) are identified with elements of
Der A(M). It is well known that any vector field on a smooth manifold gives rise to
an ordinary differential equation (ODE) on it that has a unique (local) integral flow.
Likewise, it has been proved in [13] that given a supervector field X € Der A(M)
there is a unique integral flow & : R x (U, Ay (U)) = (U, Am(U)) —that may be
defined only locally in a neighborhood I of to = 0 € R and in a neighborhood U of
a given point in M-— such that,

o o . |

(3) ev[t00(5;+—6jr—>o<1>*=evItoo<I> o X ‘
restricted by the condition |
| | |

(4) evt, o ®F =1id". i

Here, both equations are understood as maps Ay (U) = Am(U). Actually, the 1
morphism ev |z, : Arxm (I x U) = Ap(U) is defined by the conditions: If f = [
' \

f+ frr+ Zu ful® + Z# JrpTEH + Zy,y fuw€HE” + ---, then
e o (f) = Flto, ) + 3 Fulto, JE# + 3 Fuw (b0, JEHE" + -+ .
. o " 22 I7R%

Tt was also proved in [13] that under special circumstances the ODE associated to - R
i X € Der'A(M) in (3) can be posed with no ev |, on it. Those special circumstances '
" are precisely the conditions needed for the homogeneous components Xp and X3
. of X to define a Lie superalgebra over R. Therefore it is important to understand - 4
the different Lie superalgebras that can be defined with one even and one odd \
generators. It is easy to see that, up to isomorphism, there are only three of them:

Type 1 (Xo,X1]=0 and [X1,X1]=0 X
(X1, X1] = Xo - :
Type 3 [Xo,X1]=X: and  [X1,X:]=0. A

These give rise to the observation that the superderivations of R!? given by

|

i

i

]

j

% (5) Type 2 [Xo,Xl] =0 and
|

|

| ‘ i
1 0 0 ;
|

Typel Do=z and Di=5- |

o o 9
(6) TYP§ 2 Do = 3 and D;= p + To |
%) 7] b |

Type3 Do = 5% "o and D; = 5

faithfully realize these three non isomorphic Lie superalgebras. Therefore, one

would expect three different Lie supergroup structures on R*! and this is indeed

the case (see [13]). 1
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A.9 Lie supergroups. A Lie supergroup (G, Ag) is (see [3]) a supermanifold
with morphisms m : (G, Ag) x (G, Ag) = (G, Ag), € : (G, Ac) = (G, Ag) and
a: (G, Ag) = (G, Ag) satisfying the conditions

m o (p1,mo (p2,p3)) =mo (mo (p1,p2),ps)  (associativity property)
mo (id,e) = id = mo (g,id) (identity property)
mo(id,a) =& =mo (o,id) (inverse property)

where p; : (G, Ag) x (G, Ag) x (G, Ag) — (G, Ag) stands for the -th projection.

A left action from the Lie supergroup (G, Ag) into the supermanifold (M, Ap) is
a morphism ¥ : (G, Ag) x (M, Ax) — (M, Ap) such that ¥ o (€ 0 p1,p2) = p2
and ¥ o (p1, ¥ o (p2,p3)) = ¥ o (mo (p1,p2),ps), where again, p; stands for the
‘1 appropriate projection onto the i-th factor.

Let (G, Ag) be a Lie supergroup and let X be a vector field on it. We use X to
produce a vector field X on (G, Ag) x (G, Ag) = (G x G, Agxg)- It is defined as
the unique element in Der Agxa(G % G) that satisfies the conditions X pif=0
and ,/\?pgf = p3 X f, for every f € Ag(G). Now, X is called a left invariant vector
field if X satisfies

8(2)* 02 ° (pl,m)* — 6(2)“' o (p17m)* 0)?"7 |

where e®” : A(G x G) — A(G) is the morphism of sheaves of algebras associated ‘
" to the morphism & : (G, Ag) — (G, Ag) x (G, Ag) given by e® = (id,e). Lo ‘

It can be proved that the set of left invariant vector fields on the Lie super- .
group (G, Ag) has, under the commutator of derivations, the structure of a finite-
dimensional Lie superalgebra over the ground field F. Its dimension is precisely °
that of the Lie supergroup (G, Ag)- It is therefore called the Lie superalgebra as-
sociated to the Lie supergroup (G, Ag). It is a theorem due to Kostant [8] that if
the Lie superalgebra of (G, Ag) is written in terms of its even and odd subspaces
as g = go ® g1, then Lie(G) = go and Ag(G) = C°(G) ® Ag1- Thus, all Lie

! supergroups are Batchelor trivial. -

1 Remark. Given a Lie superalgebra, one can in principle find the associated Lie su-
‘ pergroup —up to coverings of the underlying Lie group, as in the smooth category—
: by following Lie’s techniques. That is, by realizing first the Lie superalgebra gener-
“\ ators as superderivations (ie, supervector fields) on some supermanifold and finding
their integral flows. These integral flows, which depend on the even and odd pa-
< rameters coming from R', can be composed in some prescribed order and then |
‘ composed with another similar set (in the same order) depending on different inte- !
gration parameter values. The result of this full ‘composition on two different set of ‘
integration parameters is then interpreted as a set of a similar sort, from which one
can in principle obtain the composition law for the integration parameters them-
selves; hence the composition law for the supergroup. This was done first in [13] as
an application of the integration of ODE’s on supermanifolds and it was found that,
for the supervector fields (6), the composition morphisms for the (1,1)-dimensional
Lie supergroups associated to the (1,1)-dimensional Lie superalgebras realized in
(6) are respectively given by
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Type 1 m ((t1, 1), (B2, 72)) = (t1 + 2,71 + 72)
Type 2 m((tla’rl)) (t277-2)) = (tl +iy+ 72,71+ 7-2)
Type 3 m ((t1,71), (t2,72)) = (t1 + b2, 72 + et2 ).

) Thus, with these three Lie supergroup structures on R!! in sight, it has been proved
(see [13, Thm 3.6]) that the integral flow & of a vector field X = Xo + X; defines

a Type j — R** —action (for 7 = 1,2,3) on a supermanifold (M, Axr) if and only if
Xo and X; generate the following (1,1)-dimensional Lie superalgebra:

[Xo,Xl] = 5]'3X1 and [Xl,Xl] = 5j2X0 (j = 1,2,3).

‘In that case, the integral flow @ of X satisfies the equation

g .0 I
(a‘f-g;—!-TDj)O@ =®" o X,

without the ev |;,—morphism and D; = jzc% + ;3 g—T.

A main goal in this Thesis. What we do for the main part of this work is to solve
Lie’s problem of finding the Lie supergroups associated to the Lie superalgebras
whose underlying Lie algebra is g, (F) and whose odd gl, (F)-module is gi, (F) under
the adjoint representation.

58




w

m—
Roi RTINS

=~

[16]

[18]

N

REFERENCES

Alekseevsky, D.V. and Cortés, V., Classification of N-(Super)-Eztended Poincare Algebras
and Bilinear Invariants of the Spinor Representation of Spin(p,q), Commun. Math. Phys.
183, 477-510 (1997). ?
Batchelor, M., The structure of supermanifolds, Trans. Amer. Math. Soc., 253 (1979), 329.
Boyer, C.P. and Sénchez-Valenzuela, O.A., Lie supergroups actions on supermanifolds, Trans.
Amer. Math. Soc 323, (1991), 151-175.

Freed, D.S., Five Lectures on Supersymmetry, American Mathematical Society, Providence,
RI, (1999).

Green, P., On holomorphic graded manifolds, Proc. Amer. Math. Soc., 85 (1982) 587-590.
Guillemin, V. and Sternberg, S., Supersymmetry and Equivariant de Rham Theory, Springer
Verlag, Berlin, Heidelberg, New York, (1999).

Kac, V. G., Lie Superalgebras, Adv. Math, 26, 8-96 (1977) 31.

Kostant, B., Graded Manifolds, Graded Lie Theory and Prequantization, Lecture notes in
mathematics, 716 (Bleuler, K. and Reetz, A., eds.), Proc. Conf. on Diff. Geom. Methods in
Math. Phys., Bonn 197‘57 vol 570, Springer Verlag, Berlin and New York, {1977}, 177-306.
Koszul, J.L., Connections and Splittings of Supermanifolds, Differential Geometry and its

/Applications 4, (1994), 151-161.
Leites, D. A., Introduction to the theory of supermanifolds, Russ. Math. Surv., 35 (1980)
1-64.

Manin, Y.I., Gauge Field Theory and Complez Geometry, Springer-Verlag, New York,
(1988).

Monterde, J., Mufioz-Masqué, J. and Sdnchez-Valenzuela, O.A., Geometric properties of
involutive distributions on graded manifolds, Indagationes Math., (1996).

Monterde, J., and Sdnchez-Valenzuela, O.A., Ezistence and uniqueness of solutions to su-
perdifferential equations, Journal of Geometry and Physics 10, (1993), 315-344.

Rothstein, M., Deformations of complez supermanifolds, Proc. Amer. Math. Soc. 95, (1985),
255.

Salgado, G., Lie superalgebras based on gi, associated to the adjoint representaiion, and
invariant geometric structures defined on them, CIMAT Ph.D. Thesis (in Spanish), (Aug.
2001). .

Scheunert, M., The theory of Lie superalgebras, an introduction, Lecture notes in mathe-
matics, 716 Springer-Verlag, New York, (1979).

Sénchez-Valenzuela, O.A., Linear Supergroup Actions I: On the Defining Properties, Trans-
actions of the American Mathematical Society 307 (1998), 569-595.

Warner, F. W., Foundations of Differentiable Manifolds, Scoot, Foreman, and Co., Glenview,
Im., (1971).

Witten, E., Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), 661-692.
Woronowicz, S.L., Compact Matriz Pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.
Woronowicz, S.L., Differential Calculus on Compact Matriz Pseudogroups, Comm. Math.
Phys. 122 (1989), 125-170.

Woronowicz, S.L., Twisted SU(2) Group: An ezample of a non-commutative differential
calculus, Publ RIMS Kyoto Univ 23 (1987), 117-181.

59




